zoukankan      html  css  js  c++  java
  • bigdata-02-hadoop2.8.4-resourceHA安装

    1, 电脑环境准备

    1), 关闭selinux

    vim /etc/selinux/config
    
    SELINUX=disabled

    2), 时间同步

    yum -y install chrony  

    修改时间服务器配置, 并重启

    vim  /etc/chrony.conf
    
    [root@dock hadoop]# cat /etc/chrony.conf | grep -v ^$ | grep -v ^#
    server 0.centos.pool.ntp.org iburst
    server 1.centos.pool.ntp.org iburst
    server 2.centos.pool.ntp.org iburst
    server 3.centos.pool.ntp.org iburst
    driftfile /var/lib/chrony/drift
    makestep 1.0 3
    rtcsync
    allow 192.168.199.0/16
    local stratum 10
    logdir /var/log/chrony

    修改需要同步的服务器配置, 并重启

    vim /etc/chrony.conf
    
    [root@node1 ~]# cat /etc/chrony.conf | grep -v ^$ | grep -v ^#
    server 192.168.199.131 iburst
    driftfile /var/lib/chrony/drift
    makestep 1.0 3
    rtcsync
    logdir /var/log/chrony

    执行时间同步

    systemctl restart chronyd
    
    [root@node2 ~]# chronyc sources -v
    210 Number of sources = 1
    
      .-- Source mode  '^' = server, '=' = peer, '#' = local clock.
     / .- Source state '*' = current synced, '+' = combined , '-' = not combined,
    | /   '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
    ||                                                 .- xxxx [ yyyy ] +/- zzzz
    ||      Reachability register (octal) -.           |  xxxx = adjusted offset,
    ||      Log2(Polling interval) --.      |          |  yyyy = measured offset,
    ||                                     |          |  zzzz = estimated error.
    ||                                 |    |           
    MS Name/IP address         Stratum Poll Reach LastRx Last sample               
    ===============================================================================
    ^* dock                          3   6   177     4  -1590ns[  +62us] +/-   13ms

    查看时间同步: 

    [root@node3 ~]# timedatectl 
          Local time: Wed 2018-03-21 08:16:02 EDT
      Universal time: Wed 2018-03-21 12:16:02 UTC
            RTC time: Wed 2018-03-21 12:16:02
           Time zone: America/New_York (EDT, -0400)
         NTP enabled: yes
    NTP synchronized: yes
     RTC in local TZ: no
          DST active: yes
     Last DST change: DST began at
                      Sun 2018-03-11 01:59:59 EST
                      Sun 2018-03-11 03:00:00 EDT
     Next DST change: DST ends (the clock jumps one hour backwards) at
                      Sun 2018-11-04 01:59:59 EDT
                      Sun 2018-11-04 01:00:00 EST

    3), 修改hostname, 很多集群都需要执行这一个

    hostname node1,
    
    hostname node2
    
    hostname node3

    4), jdk 版本

    java  -version   1.8.0_161

    5), 设置免密登陆

    ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

    发送到namenode, 设置

    非root用户, 记得修改authorized 权限为。600

    cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

    2, zookeeper 安装

    参照其他博客..

    3, hadoop安装

    zkFc-用来做HA的备份和切换的, 做active, standby的状态管理的, 监控namenode进程, 记录信息到zookeeper中

    journalNode--复制fsimage和edtis的

    1), 修改环境变量

    export HADOOP_HOME=/usr/local/hadoop-2.7.5
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

    2), 修改hadoop-env.sh

    cd {HADOOP_HOME}/etc/hadoop
    export JAVA_HOME=/usr/local/jdk/jdk1.8.0_161

    3), 配置core_site.xml

    <configuration>
        <property>
         <--! 指定hdfs的nameservice --> <name>fs.defaultFS</name> <value>hdfs://hdfscluster</value> </property> <property>
        <!-- 指定hadoop临时目录 --> <name>hadoop.tmp.dir</name> <value>/usr/local/hadoop-2.8.4/tmp</value> </property> <property>
        <!-- 指定zookeeper地址 --> <name>ha.zookeeper.quorum</name> <value>node1:2181,node2:2181,node3:2181</value> </property> </configuration>

    4), 修改 hdfs-site.xml

    <configuration>
        <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
        <property>
            <name>dfs.nameservices</name>
            <value>hdfscluster</value>
        </property>
        <!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
        <property>
            <name>dfs.ha.namenodes.hdfscluster</name>
            <value>nn1,nn2</value>
        </property>
        <!-- nn1的RPC通信地址 -->
        <property>
            <name>dfs.namenode.rpc-address.hdfscluster.nn1</name>
            <value>192.168.199.182:8020</value>
        </property>
        <!-- nn1的http通信地址 -->
        <property>
            <name>dfs.namenode.http-address.hdfscluster.nn1</name>
            <value>192.168.199.182:50070</value>
        </property>
        <!-- nn2的RPC通信地址 -->
        <property>
            <name>dfs.namenode.rpc-address.hdfscluster.nn2</name>
            <value>192.168.199.247:8020</value>
        </property>
        <!-- nn2的http通信地址 -->
        <property>
            <name>dfs.namenode.http-address.hdfscluster.nn2</name>
            <value>192.168.199.247:50070</value>
        </property>
        <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
        <property>
            <name>dfs.namenode.shared.edits.dir</name>
            <value>qjournal://node1:8485;node2:8485;node3:8485/hdfscluster</value>
        </property>
        <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
        <property>
            <name>dfs.journalnode.edits.dir</name>
            <value>/usr/local/hadoop-2.8.4/journaldata</value>
        </property>
        <!-- 开启NameNode失败自动切换 -->
        <property>
            <name>dfs.ha.automatic-failover.enabled</name>
            <value>true</value>
        </property>
        <!-- 配置失败自动切换实现方式 -->
        <property>
            <name>dfs.client.failover.proxy.provider.hdfscluster</name>
     <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
        </property>
        <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
    <property>
            <name>dfs.ha.fencing.methods</name>
            <value>sshfence</value>
        </property>
        <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
        <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/root/.ssh/id_dsa</value>
        </property>
        <!-- 配置sshfence隔离机制超时时间 -->
        <property>
            <name>dfs.ha.fencing.ssh.connect-timeout</name>
            <value>30000</value>
        </property>
    </configuration>

    备注: 如果集群成功后, 但创建目录显示: ipc.Client: Retrying connect to serve, 就更改为

    5), 添加 slaves

    vim slaves
    
    node1
    node2
    node3

    4, 配置yarn

    1), 修改mapred-site.xml.template 为 mapred-site.xml

    <configuration>  
        <!-- 指定mr框架为yarn方式 -->  
        <property>  
            <name>mapreduce.framework.name</name>  
            <value>yarn</value>  
        </property>  
    </configuration> 

    2), 配置 yarn-site.xml

    <configuration>
    
    <!-- Site specific YARN configuration properties -->
    <!-- 开启RM高可用 -->
        <property>
           <name>yarn.resourcemanager.ha.enabled</name>  
           <value>true</value>  
        </property>  
        <!-- 指定RM的cluster id -->
        <property>  
           <name>yarn.resourcemanager.cluster-id</name>
           <value>yarncluster</value>
        </property>  
        <!-- 指定RM的名字 -->  
        <property>  
           <name>yarn.resourcemanager.ha.rm-ids</name>  
           <value>rm1,rm2</value>
        </property>
        <!-- 分别指定RM的地址 -->
        <property>  
           <name>yarn.resourcemanager.hostname.rm1</name>
           <value>node1</value>
        </property>
        <property>
           <name>yarn.resourcemanager.hostname.rm2</name>
           <value>node2</value>
        </property>
        <!-- 指定zk集群地址 -->
        <property>
           <name>yarn.resourcemanager.zk-address</name>
           <value>node1:2181,node2:2181,node3:2181</value>
        </property>
        <property>
           <name>yarn.nodemanager.aux-services</name>
           <value>mapreduce_shuffle</value>
        </property>
    </configuration>

    5, 格式化namenode

    1), 3台机器启动 journalenode

    hadoop-daemon.sh start journalnode

    2), 格式化namenode, 并启动

    hdfs namenode -format
    hadoop-daemon.sh start namenode

    3), 在另一个namenode上拷贝, 或者手动拷贝

    hdfs namenode -bootstrapStandby

    4), 启动第二个namenode

    hadoop-daemon.sh start namenode

    5), 在activeNameNode上格式化zookeeper

    hdfs zkfc -formatZK
    

    6), 启动

    start-dfs.sh

    此时可通过  node1:50070 访问 hadoop

    6, 启动yarn

    1), 在nameNode上执行

    start-yarn.sh

    2), 启动 resourcenamenager

    yarn-HA, 不需要记录状态, 所以非常简单

    yarn-daemon.sh start resourcemanager

    此时可通过  node1:8088 进行访问

     以后启动时, 先启动3台zookeeper, 然后 start-dfs.sh 即可以了

    7, 进行测试 

    1, 创建输入, 输出目录

    hadoop fs -mkdir -p /data/wordcount
    hadoop fs -mkdir -p /output

    2, 上传文件

    hadoop fs -put README.txt /data/wordcount

    3, 执行样例

    hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /data/wordcount /output/wordcount

    4, 查看分片文件

    hadoop fs -text /output/wordcount/part-r-00000

    HA编程的时候应该注意: 

    1, 代码访问hdfs的时候, 

    FileSystem.get(new URI("hfs://hdfscluster/", conf), conf, "root);

    需要将配置文件 

    hdfs-site.xml, core-site.xml, yarn-site.xml, mapred-site.xml 放在resources下, 

    在 new Configuration() 的时候, 会自动加载resources中的配置文件

  • 相关阅读:
    mac上eclipse上运行word count
    利用hadoop自带程序运行wordcount
    mac上eclipse上配置hadoop
    在mac上安装hadoop伪分布式
    0到N数其中三个数的全排列
    【设计模式】【应用】使用模板方法设计模式、策略模式 处理DAO中的增删改查
    【设计模式】【行为型模式】策略模式
    【设计模式】【行为型模式】模板模式
    properties文件操作
    File相关操作
  • 原文地址:https://www.cnblogs.com/wenbronk/p/8620207.html
Copyright © 2011-2022 走看看