zoukankan      html  css  js  c++  java
  • 在.Net中关于AOP的实现

    说明:转自http://www.uml.org.cn/net/201004213.asp 感谢作者

    一、AOP实现初步

    AOP将软件系统分为两个部分:核心关注点和横切关注点。核心关注点更多的是Domain Logic,关注的是系统核心的业务;而横切关注点虽与核心的业务实现无关,但它却是一种更Common的业务,各个关注点离散地分布于核心业务的多处。这意味着,如果不应用AOP,那么这些横切关注点所代表的业务代码,就会分散在系统各处,导致系统中的每个模块都与这些业务具有很强的依赖性。在这里,所谓横切关注点所代表的业务,即为“方面(Aspect)”,常见的包括权限控制、日志管理、事务处理等等。

    以权限控制为例,假设一个电子商务系统,需要对订单管理用户进行权限判定,只有系统用户才能添加、修改和删除订单,那么传统的设计方法是:

    public class OrderManager

    {

    private ArrayList m_Orders;

    public OrderManager()

    {

           m_Orders = new ArrayList();

    }

    public void AddOrder(Order order)

    {

        if (permissions.Verify(Permission.ADMIN))

        {

                  m_Orders.Add(order);

        }

    }

    public void RemoveOrder(Order order)

    {

        if (permissions.Verify(Permission.ADMIN))

        {

                  m_Orders.Remove(order);

        }

    }

    }

    这样的设计其缺陷是将订单管理业务与权限管理完全结合在一起,耦合度高。而在一个系统中,类似的权限控制会很多,这些代码就好像一颗颗毒瘤一般蔓延于系统中的各处,一旦需要扩展,则给程序员们带来的困难是不可估量的。

    让我们来观察一下订单管理业务中的权限管理。不管是添加订单,还是删除订单,有关权限管理的内容是完全相同的。那么,为什么我们不能将这些相同的业务,抽象为一个对象,并将其从订单管理业务中完全剥离出来呢?在传统的OO设计思想,这种设想是不能实现的。因为订单管理业务作为一个类对象,它封装了诸如添加、删除订单等行为。这种封装性,就决定了我们不可能切入到对象内部,通过获取方法消息的形式,对对象行为进行监控与操作。

    AOP的思想解决了这个问题,之所以称为“方面(Aspect)”,就是把这些对象剖开,仅获取其内部相一致的逻辑,并剥离出来,以“方面”的形式存在。要让这些方面能够对核心业务进行控制,就需要有一套获取方法消息的机制。在.Net中,其中一种技术称为动态代理。

    在.Net中,要实现动态代理,需要用到.Net Remoting中的消息机制,以及.Net Framework内部提供的ContextAttribute类来自定义自己的Attribute。另外,.Net还要求调用“Aspect”的核心业务类,必须继承ContextBoundObject类。只有这样,我们才能截取其内部传递的方法消息。以下,是相关接口和类的说明。

    ContextAttribute类

    该类继承了Attribute类,它是一个特殊的Attribute,通过它,可以获得对象需要的合适的执行环境,即Context(上下文)。它还实现了IContextAttribute和IContextProperty接口。我们自定义的Attribute将从ContextAttribute类派生。

    构造函数:

    ContextAttribute类的构造函数带有一个参数,用来设置ContextAttribute的名称。

    公共属性:

    Name:只读属性。返回ContextAttribute的名称

    公共方法:

    GetPropertiesForNewContext:虚拟方法。向新的Context添加属性集合。

    IsContextOK虚拟方法。查询客户Context中是否存在指定的属性。

    IsNewContextOK虚拟方法。默认返回true。一个对象可能存在多个Context,使用这个方法来检查新的Context中属性是否存在冲突。

    Freeze:虚拟方法。该方法用来定位被创建的Context的最后位置。

     

    ContextBoundObject 

    这个类的对象通过Attribute来指定它所在的Context,凡是进入该Context的调用都可以被拦截。该类从MarshalByRefObject派生。

     

    IMessage:定义了被传送的消息的实现。一个消息必须实现这个接口。

    IMessageSink:定义了消息接收器的接口,一个消息接收器必须实现这个接口。

    该接口主要提供了两个方法,分别进行同步和异步操作:

    SyncProcessMessage(IMessage msg):接口方法,当消息传递的时候,该方法被调用;

    AsyncProcessMessage(IMessage msg, IMessageSink replySink):该方法用于异步处理;

    下面是实现权限控制AOP的简单实现,首先我们自定义一个Attribute,它继承了ContextAttribute:

    [AttributeUsage(AttributeTargets.Class)]

        public class AOPAttribute:ContextAttribute

        {

            public AOPAttribute()

                : base("AOP")

            {

            }

     

            public override void GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)

            {

                ctorMsg.ContextProperties.Add(new AOPProperty());

            }

        }

    在GetPropertiesForNewContext()方法中,添加了AOPProperty对象,它是一个上下文环境属性:

        public class AOPProperty : IContextProperty, IContributeObjectSink

        {

            public AOPProperty()

            {

            }

     

            #region IContributeObjectSink Members

     

            public IMessageSink GetObjectSink(MarshalByRefObject obj, IMessageSink nextSink)

            {

                return new AOPSink(nextSink);

            }

     

            #endregion

     

            #region IContextProperty Members

     

            public void Freeze(Context newContext)

            {           

            }

     

            public bool IsNewContextOK(Context newCtx)

            {

                return true;

            }

     

            public string Name

            {

                get { return "AOP"; }

            }

     

            #endregion

    AOPProperty属性实现了接口IContextProperty,IContributeObjectSink。GetObjectSink()方法为IContributeObjectSink接口的方法,在其实现中,创建了一个IMessageSink对象AOPSink,该对象实现了IMessageSink接口:

        public class AOPSink : IMessageSink

        {       

            private IMessageSink m_NextSink;

     

            public AOPSink(IMessageSink nextSink)

            {

                m_NextSink = nextSink;          

            }

     

            public IMessageSink NextSink

            {

                get { return m_NextSink; }

            }

     

            public IMessage SyncProcessMessage(IMessage msg)

            {

                IMethodCallMessage call = msg as IMethodCallMessage;

                if (call == null)

    {

        return null;

    }

    IMessage retMsg = null;

    if (call.MethodName == "AddOrder" || call.MethodName == "DeleteOrder")

    {

        if (permissions.Verify(Permission.ADMIN))

        {

              retMsg = m_NextSink.SyncProcessMessage(msg);

        }

    }           

                return retMsg;

            }

     

            public IMessageCtrl AsyncProcessMessage(IMessage msg, IMessageSink replySink)

            {

                return null;

            }

        }

    在AOPSink中,最重要的是SyncProcessMessage()方法,在这个方法中,实现了权限控制,并通过IMessage,截取了需要权限控制的方法。在检验了权限之后,然后再执行OrderManager的AddOrder和DeleteOrder方法。

    通过AOP的实现,原来的OrderManager,就可以修改为:

    [AOP]

    public class OrderManager: ContextBoundObject

    {

    private ArrayList m_Orders;

    public OrderManager()

    {

           m_Orders = new ArrayList();

    }

    public void AddOrder(Order order)

    {

        m_Orders.Add(order);

    }

    public void RemoveOrder(Order order)

    {

        m_Orders.Remove(order);

    }

    }

    在上述的OderManager类中,完全消除了permissions.Verify()等有关权限的代码,解除了订单管理与权限管理之间的耦合。

    二、与AspectJ比较

    上述的方案虽然解除了订单管理与权限管理的耦合,但从SyncProcessMessage()方法可以看出,它的实现具有很大的局限性。试想一下这样的应用场景,在订单管理系统中,用户要求对修改订单的方法增加权限验证,同时要求在验证权限时,允许业务经理(Permission.Manager)也具备管理订单的权限,应该怎样做?仔细思考,我们会发觉以上的实现未免太过死板了。

    让我们来参考一下AspectJ在java中的实现。AspectJ提供了自己的一套语法,其中包括aspect、pointcut、before、after等。我们可以通过aspect定义一个“方面”,如上的权限管理:

    private static aspect AuthorizationAspect{……}

    pointcut为切入点,在其中定义了需要截取上下文消息的方法,例如:

    private pointcut authorizationExecution():

    execution(public void OrderManager.AddOrder(Order)) ||

    execution(public void OrderManager.DeleteOrder(Order)) ||

    execution(public void OrderManager.UpdateOrder(Order));

    由于权限验证是在订单管理方法执行之前完成,因此在before中,定义权限检查:

    before(): authorizationExecution()

    {

    if !(permissions.Verify(Permission.ADMIN))

    {

        throw new UnauthorizedException();

    }

    }

    从上述AspectJ的实现中,我们可以看到,要定义自己的aspect是非常容易的,而通过pointcut的方式,可以将需要截取消息的方法,集中在一起。before和after则是具体的方面执行的逻辑,它们就好像Decorator模式那样,对原有方法进行了一层装饰,从而达到将aspect代码植入的目的。

    另外,AspectJ还提供了更简单的语法,可以简化前面pointcut中一系列方法的列举:

    private pointcut authorizationExecution():

    execution (public * OrderManager.*(.))

    AspectJ在应用AOP领域,已经非常成熟。它提供了自成一体的特有AspectJ语法,并需要专门的java编译器,使用起来较为复杂。那么,在.Net下,可否实现类似AspectJ的功能呢?我想,由于.Net与java在很多技术的相似性,它们彼此之间在很多领域是相通的,因此要达到这一目标应该是可行的。事实上,开源项目中的Aspect#,就与AspectJ相似。

    事实上,如果我们利用前面描述的动态代理机制,辅以设计模式的OO设计方法,直接在代码中也可以实现AspectJ中的部分AOP特性。

    三、.Net中AOP的深入实现

    我们先分析AspectJ中的pointcut和.Net中的SyncProcessMessage()方法。Pointcut可以添加一系列需要截取上下文的方法,那么在.Net中,我们也可以利用集合,动态地添加方法,并创建这些方法与“方面”的映射。同样的,AspectJ中的before和after,是“方面”的核心实现,那么在.Net中,我们也可以利用委托,使其对应相关的方法,来实现其核心逻辑。

    结合动态代理的知识,我们先定义两个委托,分别代表before和after操作:

    public delegate void BeforeAOPHandle(IMethodCallMessage callMsg);

    public delegate void AfterAOPHandle(IMethodReturnMessage replyMsg);

    BeforeAOPHandle中的参数callMsg,其值为要截取上下文的方法的消息;AfterAOPHandle中的参数replyMsg,则是该方法执行后返回的消息。

    接下来,定义一个抽象基类AOPSink,它实现了IMessageSink接口:

    public abstract class AOPSink : IMessageSink

        {

            private SortedList m_BeforeHandles;

            private SortedList m_AfterHandles;

            private IMessageSink m_NextSink;

    }

    在类AOPSink中,定义了两个SortedList类型的字段:m_BeforeHandles和m_AfterHandles。它们负责存放方法名与BeforeAOPHandle和AfterAOPHandle对象之间的映射。添加这些映射的职责由如下两个方法完成:

    protected virtual void AddBeforeAOPHandle(string methodName, BeforeAOPHandle beforeHandle)

    {

         lock (this.m_BeforeHandles)

         {

             if (!m_BeforeHandles.Contains(methodName))

             {

                 m_BeforeHandles.Add(methodName, beforeHandle);

             }

         }

    }

    protected virtual void AddAfterAOPHandle(string methodName, AfterAOPHandle afterHandle)

    {

          lock (this.m_AfterHandles)

          {

              if (!m_AfterHandles.Contains(methodName))

              {

                  m_AfterHandles.Add(methodName, afterHandle);

              }

          }

    }

    考虑到我们要截取的方法可能会有多个,因此在类AOPSink中,又定义了两个抽象方法,负责添加所有的映射关系:

    protected abstract void AddAllBeforeAOPHandles();

    protected abstract void AddAllAfterAOPHandles();

     

    然后在构造函数中,我们初始化两个SortedList对象,并调用上述的两个抽象方法:

            public AOPSink(IMessageSink nextSink)

            {

                m_NextSink = nextSink;

                m_BeforeHandles = new SortedList();

                m_AfterHandles = new SortedList();

                AddAllBeforeAOPHandles();

                AddAllAfterAOPHandles();

            }

     

    为了能够根据方法名获得相对应的委托对象,我们又定义了两个Find方法。考虑到可能会有多个用户同时调用,在这两个方法中,我利用lock避免了对象的争用:

            protected BeforeAOPHandle FindBeforeAOPHandle(string methodName)

            {

                BeforeAOPHandle beforeHandle;

                lock (this.m_BeforeHandles)

                {

                    beforeHandle = (BeforeAOPHandle)m_BeforeHandles[methodName];

                }

                return beforeHandle;

            }

            protected AfterAOPHandle FindAfterAOPHandle(string methodName)

            {

                AfterAOPHandle afterHandle;

                lock (this.m_AfterHandles)

                {

                    afterHandle = (AfterAOPHandle)m_AfterHandles[methodName];

                }

                return afterHandle;

            }

    接下来是IMessageSink接口要求实现的方法和属性:

            public IMessageSink NextSink

            {

                get { return m_NextSink; }

            }

     

            public IMessage SyncProcessMessage(IMessage msg)

            {

                IMethodCallMessage call = msg as IMethodCallMessage;

                string methodName = call.MethodName.ToUpper();

                BeforeAOPHandle beforeHandle = FindBeforeAOPHandle(methodName);

                if (beforeHandle != null)

                {

                    beforeHandle(call);

                }

                IMessage retMsg = m_NextSink.SyncProcessMessage(msg);

                IMethodReturnMessage replyMsg = retMsg as IMethodReturnMessage;

                AfterAOPHandle afterHandle = FindAfterAOPHandle(methodName);

                if (afterHandle != null)

                {

                    afterHandle(replyMsg);

                }

                return retMsg;

            }

     

            public IMessageCtrl AsyncProcessMessage(IMessage msg, IMessageSink replySink)

            {

                return null;

            }

    需要注意的是SyncProcessMessage()方法。在该方法中,通过FindBeforeAOPHandle()和FindAfterAOPHandle()方法,找到BeforeAOPHandle和AfterAOPHandle委托对象,并执行它们。即执行这两个委托对象具体指向的方法,类似与AspectJ中的before和after的execution。

    现在,我们就可以象AspectJ那样定义自己的aspect了。如权限管理一例,我们定义一个类AuthorizationAOPSink,它继承了AOPSink:

    public class AuthorizationAOPSink : AOPSink

    {

        public AuthorizationAOPSink(IMessageSink nextSink)

                : base(nextSink)

       {

       }

    }

    然后在这个方法中,实现before和after的逻辑。注意before和after方法应与之前定义的委托BeforeAOPHandle和AfterAOPHandle一致。不过,以本例而言,并不需要实现after逻辑:

    private void Before_Authorization(IMethodCallMessage callMsg)

    {      

            if (callMsg == null)

            {

                  return;

            }

            if (!permissions.Verify(Permission.ADMIN))

            {

                     throw UnauthorizedException();

             }

    }

    然后我们override基类中的抽象方法AddAllBeforeAOPHandles()和AddAllAfterAOPHandles():

    protected override void AddAllBeforeAOPHandles()

            {

                AddBeforeAOPHandle("ADDORDER", new BeforeAOPHandle(Before_Authorization));

                AddBeforeAOPHandle("DELETEORDER", new BeforeAOPHandle(Before_Authorization));

            }

     

            protected override void AddAllAfterAOPHandles()

            {           

            }

    因为after逻辑不需要实现,因此重写AddAllAfterAOPHandles()时,使其为空就可以了(必须重写,因为该方法为抽象方法)。在AOPProperty类中,需要返回IMessageSink对象,所以还应修改原来的AOPProperty类中的GetObjectSink方法:

    public IMessageSink GetObjectSink(MarshalByRefObject obj, IMessageSink nextSink)

            {

                return new AOPSink(nextSink);

    return new AuthorizationAOPSink(nextSink);       

            }

    比较一下上述的实现方案,自定义的继承AOPSink类的AuthorizationAOPSink就相当于AspectJ中的aspect。而与BeforeAOPHandle和AfterAOPHandle委托对应的方法,则相当于AspectJ的before和after语法。AddAllBeforeAOPHandles()和AddAllAfterAOPHandle()则相当于AspectJ的pointcut。通过引入委托的方法,使得我们的AOP实现,具有了AspectJ的一些特性,而这些实现是不需要专门的编译器的。

    很明显,如果我们要求OrderManager类中新增的UpdateOrder方法,也要加入权限控制,那么我们可以在AddAllBeforeAOPHandles()方法中,增加UpdaeOrder方法与before逻辑的映射:

    AddBeforeAOPHandle("UPDATEORDER", Before_Authorization);

    同样的,如果要对权限控制进行修改,开发业务经理对订单管理的权限,那么也只需要修改Before_Authorization()方法:

    private void Before_Authorization(IMessage callMsg)

    {

           IMethodCallMessage call = callMsg as IMethodCallMessage;

            if (call == null)

            {

                  return;

            }

            if (!(permissions.Verify(Permission.ADMIN)|| permissions.Verify(Permission.MANAGER)))

            {

                     throw UnauthorizedException();

             }

    }

    四、进一步完善 

    由于我们的委托列表m_BeforeHandles和m_AfterHandles为SortedList类型,因此作为key的methodName必须是唯一的。如果系统要求添加其他权限控制的逻辑,例如增加认证功能,就不能再在AuthorizationAOPSink类的AddAllBeforeAOPHandles()方法中增加方法名与认证功能的before逻辑之间的映射了。

    private void Before_Authentication(IMessage callMsg){……}

    protected override void AddAllBeforeAOPHandles()

    {

           ……

           AddBeforeAOPHandle("ADDORDER", new BeforeAOPHandle(Before_ Authentication));

           AddBeforeAOPHandle("DELETEORDER", new BeforeAOPHandle(Before_ Authentication));

    }

    如果在AuthorizationAOPSink类中添加上面的代码,由于新增的“ADDORDER”key与前面重复,故执行程序时,是找不到相应的委托Before_Authentication的。

    解决的办法就是为认证功能新定义一个aspect。由于在本方案中,实现AOP功能的不仅仅是实现了IMessageSink接口的AOPSink类,同时该类还与Property、Attribute有关。也就是说,如果我们新定义一个AuthenticationAOPSink,那么还要定义与之对应的AuthenticationAOPProperty类。为便于扩展,我采用了Template Method模式,为所有的property定义了抽象类AOPProperty,其中的抽象方法或虚方法,则留待其子类来实现。

        public abstract class AOPProperty : IContextProperty, IContributeObjectSink

        {

            protected abstract IMessageSink CreateSink(IMessageSink nextSink);

            protected virtual string GetName()

            {

                return "AOP";

            }

     

            protected virtual void FreezeImpl(Context newContext)

            {

                return;

            }

            protected virtual bool CheckNewContext(Context newCtx)

            {

                return true;

            }

     

            #region IContributeObjectSink Members

            public IMessageSink GetObjectSink(MarshalByRefObject obj, IMessageSink nextSink)

            {

                return CreateSink(nextSink);

            }

            #endregion

     

            #region IContextProperty Members

            public void Freeze(Context newContext)

            {

                FreezeImpl(newContext);

            }

            public bool IsNewContextOK(Context newCtx)

            {

                return CheckNewContext(newCtx);

            }

            public string Name

            {

                get { return GetName(); }

            }

            #endregion

    }

    与原来的AOPProperty类相比,IContextProperty,IContributeObjectSink接口的方法与属性,都没有直接实现,而是在其内部调用了相关的抽象方法和虚方法。包括:抽象方法CreateSink(),虚方法FreezeImpl(),CheckNewContext()以及GetName()。对于其子类而言,需要override的,主要是抽象方法CreateSink()和GetName()(因为Property的Name必须是唯一的),至于其他虚方法,可以根据需要选择是否override。例如,自定义权限控制的属性类AuthorizationAOPProperty:

        public class AuthorizationAOPProperty :AOPProperty

        {   

            protected override IMessageSink CreateSink(IMessageSink nextSink)

            {

                return new AuthorizationAOPSink(nextSink);

            }

     

            protected override string GetName()

            {

                return "AuthorizationAOP";

            }

        }

    在该类中,我们override了CreateSink()方法,创建了一个AuthorizationAOPSink对象。同时override了虚方法GetName,返回了自己的一个名字“AuthorizationAOP”。

    关于Attribute类,观察其方法GetPropertiesForNewContext(),其实现是在IConstructionCallMessage消息的上下文property中添加自定义property。这些property组成了一个链,它是可以静态添加的。鉴于此,我们可以采取两种策略:

    1、 所有的aspect都使用同一个Attribute。其实现如下:

        [AttributeUsage(AttributeTargets.Class)]

        public class AOPAttribute:ContextAttribute

        {

            public AOPAttribute()

                : base("AOP")

            {

            }

     

            public override void GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)

            {

                ctorMsg.ContextProperties.Add(new AuthorizationAOPProperty());

                ctorMsg.ContextProperties.Add(new AuthenticationAOPProperty());

            }

    }

    在方法GetPropertiesForNewContext()中,添加多个自定义Property。在添加Property时,需要注意添加Property的顺序。

    2、 不同的aspect使用不同的Attribute。此时可以为这些Attribute定义一个共同的抽象基类AOPAttribute:

    [AttributeUsage(AttributeTargets.Class)]

        public abstract class AOPAttribute:ContextAttribute

        {

             public AOPAttribute()

                 : base("AOP")

             {

             }

     

             public sealed override void GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)

             {

                 ctorMsg.ContextProperties.Add(GetAOPProperty());

             }

     

             protected abstract AOPProperty GetAOPProperty();        

        }

    注:我将GetPropertiesForNewContext()方法sealed,目的是不需要其子类在重写该方法。

    继承AOPAttribute类的子类只需要重写GetAOPProperty()方法即可。但在为OrderManager类定义Attribute的时候,需注意其顺序。如以下的顺序:

    [AuthorizationAOP]

    [AuthenticationAOP]

    public class OrderManager{}

    此时,AuthorizationAOPAttribute在前,AuthenticationAOPAttribute在后。如果以Decorator的角度来看,对被装饰的方法,AuthorizationAOPAttribute在内,AuthenticationAOPAttribute在外。

    考虑到aspect的应用,有的方法需要多个aspect,有的则只需要单个aspect,所以,第二个方案更佳。

    五、AOP实例

    接下来,我通过一个实例,介绍AOP的具体实现。假定我们要设计一个计算器,它能提供加法和减法功能。我们希望,在计算过程中,能够通过日志记录整个计算过程及其结果,同时需要监测其运算性能。该例中,核心业务是加法和减法,而公共的业务则是日志与监测功能。根据前面对AOP的分析,这两个功能应为我们整个系统需要剥离出来的“方面”。

    我们已经拥有了一个AOP实现机制,以及核心的类库,包括AOPSink、AOPProperty、AOPAttribute三个抽象基类。现在,我们分别为日志aspect和监测aspect,定义相应的Sink、Property、Attribute。

    首先是日志aspect:

    LogAOPSink.cs:

    using System;

    using System.Runtime.Remoting.Messaging;

    using Wayfarer.AOP;

     

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for LogAOPSink.

        /// </summary>

        public class LogAOPSink:AOPSink

        {

             public LogAOPSink(IMessageSink nextSink):base(nextSink)

             {

     

             }

     

             protected override void AddAllBeforeAOPHandles()

             {

                  AddBeforeAOPHandle("ADD",new BeforeAOPHandle(Before_Log));

                 AddBeforeAOPHandle("SUBSTRACT",new BeforeAOPHandle(Before_Log));

             }

     

             protected override void AddAllAfterAOPHandles()

             {

                 AddAfterAOPHandle("ADD",new AfterAOPHandle(After_Log));

                 AddAfterAOPHandle("SUBSTRACT",new AfterAOPHandle(After_Log));

             }

     

             private void Before_Log(IMethodCallMessage callMsg)

             {           

                 if (callMsg == null)

                 {

                      return;

                 }           

                           Console.WriteLine("{0}({1},{2})",callMsg.MethodName,callMsg.GetArg(0),callMsg.GetArg(1));

             }

     

             private void After_Log(IMethodReturnMessage replyMsg)

             {           

                 if (replyMsg == null)

                 {

                      return;

                 }           

                 Console.WriteLine("Result is {0}",replyMsg.ReturnValue);         

             }

     

        }

    }

    LogAOPProperty.cs

    using System;

    using Wayfarer.AOP;

    using System.Runtime.Remoting.Messaging;

     

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for LogAOPProperty.

        /// </summary>

        public class LogAOPProperty:AOPProperty

        {

             protected override IMessageSink CreateSink(IMessageSink nextSink)

             {

                 return new LogAOPSink(nextSink);

             }

     

             protected override string GetName()

             {

                 return "LogAOP";

             }

        }

    }

    LogAOPAttribute.cs:

    using System;

    using System.Runtime.Remoting.Activation;

    using System.Runtime.Remoting.Contexts;

    using Wayfarer.AOP;

     

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for LogAOPAttribute.

        /// </summary>

        [AttributeUsage(AttributeTargets.Class)]

        public class LogAOPAttribute:AOPAttribute

        {

             protected override AOPProperty GetAOPProperty()

             {

                 return new LogAOPProperty();

             }

     

        }

    }

    然后再定义监测aspect:

    MonitorAOPSink.cs:

    using System;

    using System.Runtime.Remoting.Messaging;

    using Wayfarer.AOP;

     

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for MonitorAOPSink.

        /// </summary>

        public class MonitorAOPSink:AOPSink

        {

             public MonitorAOPSink(IMessageSink nextSink):base(nextSink)

             {

     

             }

     

             protected override void AddAllBeforeAOPHandles()

             {

                 AddBeforeAOPHandle("ADD",new BeforeAOPHandle(Before_Monitor));

                 AddBeforeAOPHandle("SUBSTRACT",new BeforeAOPHandle(Before_Monitor));

             }

             protected override void AddAllAfterAOPHandles()

             {

                 AddAfterAOPHandle("ADD",new AfterAOPHandle(After_Monitor));

                 AddAfterAOPHandle("SUBSTRACT",new AfterAOPHandle(After_Monitor));

             }

     

             private void Before_Monitor(IMethodCallMessage callMsg)

             {           

                 if (callMsg == null)

                 {

                      return;

                 }

                 Console.WriteLine("Before {0} at {1}",callMsg.MethodName,DateTime.Now);

             }

             private void After_Monitor(IMethodReturnMessage replyMsg)

             {           

                 if (replyMsg == null)

                 {

                      return;

                 }

                 Console.WriteLine("After {0} at {1}",replyMsg.MethodName,DateTime.Now);

             }

        }

    }

    MonitorAOPProperty.cs:

    using System;

    using Wayfarer.AOP;

    using System.Runtime.Remoting.Messaging;

     

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for MonitorAOPProperty.

        /// </summary>

        public class MonitorAOPProperty:AOPProperty

        {

             public MonitorAOPProperty()

             {

                 //

                 // TODO: Add constructor logic here

                 //

             }

     

             protected override IMessageSink CreateSink(IMessageSink nextSink)

             {

                 return new MonitorAOPSink(nextSink);

             }

     

             protected override string GetName()

             {

                 return "MonitorAOP";

             }

        }

    }

    MonitorAOPAttribute.cs:

    using System;

    using System.Runtime.Remoting.Activation;

    using System.Runtime.Remoting.Contexts;

    using Wayfarer.AOP;

     

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for MonitorAOPAttribute.

        /// </summary>

        [AttributeUsage(AttributeTargets.Class)]

        public class MonitorAOPAttribute:AOPAttribute

        {

             protected override AOPProperty GetAOPProperty()

             {

                 return new MonitorAOPProperty();

             }

        }

    }

    注意在这两个方面中,各自的Property的Name必须是唯一的。

    现在,可以定义计算器类。

    Calculator.cs:

    using System;

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for Calculator.

        /// </summary>

        [MonitorAOP]

        [LogAOP]

        public class Calculator:ContextBoundObject

        {

             public int Add(int x,int y)

             {

                 return x + y;

             }

     

             public int Substract(int x,int y)

             {

                 return x - y;

             }

        }

    }

    需要注意的是Calculator类必须继承ContextBoundObject类。

    最后,我们写一个控制台程序来执行Calculator:

    Program.cs:

    using System;

    namespace Wayfarer.AOPSample

    {

        /// <summary>

        /// Summary description for Class1.

        /// </summary>

        class Program

        {

             /// <summary>

             /// The main entry point for the application.

             /// </summary>

             [STAThread]

             static void Main (string[] args)

             {

                 Calculator cal = new Calculator();

                 cal.Add(3,5);

                 cal.Substract(3,5);

                 Console.ReadLine();

             }

        }

    }

    运行结果如下:

    六、结论

    在.Net平台下采用动态代理技术实现AOP,其原理并不复杂,而.Net Framework也提供了足够的技术来实现它。如果再结合好的设计模式,提供一个基本的AOP框架,将大大地简化开发人员处理“aspect”的工作。当然,本文虽然提供了实现AOP的实例,但其架构的设计还远远不能达到企业级的要求,如在稳定性、可扩展性上还需经过进一步的测试与改善。例如我们可以通过配置文件的形式,来配置方法与方面之间的映射。同时,由于采用了动态代理,在性能上还期待改进。

    使用动态代理技术实现AOP,对实现AOP的类有一个限制,就是必须派生于ContextBoundObject类,这对于单继承语言来说,确实是一个比较致命的缺陷。所谓“仁者见仁,智者见智”,这就需要根据项目的情况,做出正确的抉择了。

    参考:

    1、 JGTM,《A Taste of AOP from Solving Problems with OOP and Design Patterns

    2、 NiWalker,《Attribute在.Net编程的应用》

    3、板桥里人,《AOP与权限控制实现》

    在《在.Net中关于AOP的实现》我通过动态代理的技术,基本上实现了AOP的几个技术要素,包括aspect,advice,pointcut。在文末我提到采用配置文件方式,来获取advice和pointcut之间的映射,从而使得构建aspect具有扩展性。

    细细思考这个问题,我发现使用delegate来构建advice,似乎并非一个明智的选择。我在建立映射关系时,是将要拦截的方法名和拦截需要实现的aspect逻辑建立一个对应关系,而该aspect逻辑确实可以通过delegate,使其指向一族方法签名与该委托完全匹配的方法。这使得advice能够抽象化,以便于具体实现的扩展。然而,委托其实现毕竟是面向过程的范畴,虽然在.Net下,delegate本身仍是一个类对象,然而在创建具体的委托实例时,仍然很难通过配置文件和反射技术来获得。

    考虑到委托具有的接口抽象的本质,也许采用接口的方式来取代委托更为可行。在之前的实现方案中,我为advice定义了两个委托:

    public delegate void BeforeAOPHandle(IMethodCallMessage callMsg);

    public delegate void AfterAOPHandle(IMethodReturnMessage replyMsg);

    我可以定义两个接口IBeforeAction和IAfterAction,分别与这两个委托相对应:

        public interface IBeforeAdvice

        {

            void BeforeAdvice(IMethodCallMessage callMsg);

    }

        public interface IAfterAdvice

        {

            void AfterAdvice(IMethodReturnMessage returnMsg);

    }

    通过定义的接口,可以将Advice与Aspect分离开来,这也完全符合OO思想中的“责任分离”原则。

    (注:为什么要为Advice定义两个接口?这是考虑到有些Aspect只需要提供Before或After两个逻辑之一,如权限控制,就只需要before Action。)

    那么当类库使用者,要定义自己的Aspect时,就可以定义具体的Advice类,来实现这两个接口,以及具体的Advice逻辑了。例如,之前提到的日志Aspect:

        public class LogAdvice:IAfterAdvice,IBeforeAdvice

        {

            #region IBeforeAdvice Members

     

            public void BeforeAdvice(IMethodCallMessage callMsg)

            {

                if (callMsg == null)

                {

                    return;

                }

                Console.WriteLine("{0}({1},{2})", callMsg.MethodName, callMsg.GetArg(0), callMsg.GetArg(1));

            }

     

            #endregion

     

            #region IAfterAdvice Members

     

            public void AfterAdvice(IMethodReturnMessage returnMsg)

            {

                if (returnMsg == null)

                {

                    return;

                }

                Console.WriteLine("Result is {0}", returnMsg.ReturnValue);

            }

     

            #endregion

    }

    而在AOPSink类的派生类中,添加方法名与Advice映射关系(此映射关系,我们即可理解为AOP的pointcut)时,就可以添加实现了Advice接口的类对象,如:

             public override void AddAllBeforeAdvices()

             {

                AddBeforeAdvice("ADD",new LogAdvice());

                AddBeforeAdvice("SUBSTRACT", new LogAdvice());

             }

             public override void AddAllAfterAdvices()

             {

                 AddAfterAdvice("ADD",new LogAdvice());

                AddAfterAdvice("SUBSTRACT", new LogAdvice());

             }

    由于LogAdvice类实现了接口IBeforeAdvice和IAfterAdvice,因此诸如new LogAdvice的操作均可以通过反射来创建该实例,如:

    IBeforeAdvice beforeAdvice =

    (IBeforeAdvice)Activator.CreateInstance("Wayfarer.AOPSample","Wayfarer.AOPSample.LogAdvice").Unwrap();

    而CreateInstance()方法的参数值,是完全可以通过配置文件来配置的:

    <aop>

        <aspect value ="LOG">

             <advice type="before" assembly="Wayfarer.AOPSample" class="Wayfarer.AOPSample.LogAdvice">

                 <pointcut>ADD</pointcut>

                 <pointcut>SUBSTRACT</pointcut>

             </advice>

             <advice type="after" assembly="Wayfarer.AOPSample" class="Wayfarer.AOPSample.LogAdvice">

                 <pointcut>ADD</pointcut>

                 <pointcut>SUBSTRACT</pointcut>

             </advice>

        </aspect>   

    </aop>

    这无疑改善了AOP实现的扩展性。

    《在.Net中关于AOP的实现》实现AOP的方案,要求包含被拦截方法的类必须继承ContextBoundObject。这是一个比较大的限制。不仅如此,ContextBoundObject对程序的性能也有极大的影响。我们可以做一个小测试。定义两个类,其中一个类继承ContextBoundObject。它们都实现了一个累加的操作:

    class NormalObject

        {

            public void Sum(int n)

            {

                int sum = 0;

                for (int i = 1; i <= n; i++)

                {

                    sum += i;

                }

                Console.WriteLine("The result is {0}",sum);

                Thread.Sleep(10);

            }

        }

     

        class MarshalObject:ContextBoundObject

        {

            public void Sum(int n)

            {

                int sum = 0;

                for (int i = 1; i <= n; i++)

                {

                    sum += i;

                }

                Console.WriteLine("The result is {0}", sum);

                Thread.Sleep(10);

            }

        }

    然后执行这两个类的Sum()方法,测试其性能:

        class Program

        {

            static void Main (string[] args)

            {

                long normalObjMs, marshalObjMs;

                Stopwatch watch = new Stopwatch();

                NormalObject no = new NormalObject();

                MarshalObject mo = new MarshalObject();

     

                watch.Start();

                no.Sum(1000000);

                watch.Stop();

                normalObjMs = watch.ElapsedMilliseconds;

                watch.Reset();

     

                watch.Start();

                mo.Sum(1000000);

                watch.Stop();

                marshalObjMs = watch.ElapsedMilliseconds;

                watch.Reset();

     

                Console.WriteLine("The normal object consume {0} milliseconds.",normalObjMs);

                Console.WriteLine("The contextbound object consume {0} milliseconds.",marshalObjMs);           

                Console.ReadLine();

            }

        }

    得到的结果如下:

    从性能的差异看,两者之间的差距是比较大的。如果将其应用在企业级的复杂逻辑上,这种区别就非常明显了,对系统带来的影响也是非常巨大的。

    另外,在《在.Net中关于AOP的实现》文章后,有朋友发表了很多中肯的意见。其中有人提到了AOPAttribute继承ContextAttribute的问题。评论中提及微软在以后的版本中,不再提供ContextAttribute。如果真是如此,确有必要放弃继承ContextAttribute的形式。不过,在.Net中,除了ContextAttribute之外,还提供有一个接口IContextAttribute,该接口的定义为:

    public interface IContextAttribute

    {

            void GetPropertiesForNewContext(IConstructionCallMessage msg);

            bool IsContextOK(Context ctx, IConstructionCallMessage msg);       

    }

    此时只需要将原来的AOPAttribute实现该接口即可:

        public abstract class AOPAttribute:Attribute,IContextAttribute//ContextAttribute

        {

            #region IContextAttribute Members

            public void GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)

            {

                AOPProperty property = GetAOPProperty();

                property.AspectXml = m_AspectXml;

                property.AspectXmlFlag = m_AspectXmlFlag;

                ctorMsg.ContextProperties.Add(property);

            }

     

            public bool IsContextOK(Context ctx, IConstructionCallMessage ctorMsg)

            {

                return false;

            }

            #endregion

    }

    不知道,IContextAttribute似乎也会在未来的版本中被取消呢?

     

    然而,从总体来看,这种使用ContextBoundObject的方式是不太理想的,也许它只能停留在实验室阶段,或许期待微软在未来的版本中得到更好的解决!?

     

    当然,如果采用Castle的DynamicProxy技术,可以突破必须继承CotextBoundObject的局限,但随着而来的局限却是AOP拦截的方法,要求必须是virtual的。坦白说,这样的限制,不过与前者乃“五十步笑百步”的区别而已。我还是期待有更好的解决方案。

     

    说到AOP的几大要素,在这里可以补充说说,它主要包括:

    1、Cross-cutting concern

      在OO模型中,虽然大部份的类只有单一的、特定的功能,但它们通常会与其他类有着共同的第二需求。例如,当线程进入或离开某个方法时,我们可能既要在数据访问层的类中记录日志,又要在UI层的类中记录日志。虽然每个类的基本功能极然不同,但用来满足第二需求的代码却基本相同。

    2、Advice

      它是指想要应用到现有模型的附加代码。例如在《在.Net中关于AOP的实现》的例子中,是指关于打印日志的逻辑代码。

    3、Point-cut

      这个术语是指应用程序中的一个执行点,在这个执行点上需要采用前面的cross-cutting concern。如例子中,执行Add()方法时出现一个Point-cut,当方法执行完毕,离开方法时又出现另一个Point-cut。

    4、Aspect

    Point-cut和advice结合在一起就叫做aspect。如例子中的Log和Monitor。在对本例的重构中,我已经AOPSink更名为Aspect,相应的LogAOPSink、MonitorAOPSink也更名为LogAspect,MonitorAspect。

    以上提到的PointCut和Advice在AOP技术中,通常称为动态横切技术。与之相对应的,是较少被提及的静态横切。它与动态横切的区别在于它并不修改一个给定对象的执行行为,相反,它允许通过引入附加的方法属性和字段来修改对象固有的结构。在很多AOP实现中,将静态横切称为introduce或者mixin。

     

    在开发应用系统时,如果需要在不修改原有代码的前提下,引入第三方产品和API库,静态横切技术是有很大的用武之地的。从这一点来看,它有点类似于设计模式中提到的Adapter模式需要达到的目标。不过,看起来静态横切技术应比Adapter模式更加灵活和功能强大。

     

    例如,一个已经实现了收发邮件的类Mail。然而它并没有实现地址验证的功能。现在第三方提供了验证功能的接口IValidatable:

    public interface IValidatable

    {

        bool ValidateAddress();

    }

    如果没有AOP,采用设计模式的方式,在不改变Mail类的前提下,可以通过Adapter模式,引入MailAdater,继承Mail类,同时实现IValidatable接口。采用introduce技术,却更容易实现该功能的扩展,我们只需要定义aspect:(注:java代码,使用了AspectJ)

    import com.acme.validate.Validatable;

     

    public aspect EmailValidateAspect

    {

       declare parents: Email implements IValidatable;

     

       public boolean Email.validateAddress(){

         if(this.getToAddress() != null){

              return true;

         }else{

              return false;

         }

       }

    }

     

    从上可以看到,通过EmailValidateAspect方面,为Email类introduce了新的方法ValidateAddress()。非常容易的就完成了Email的扩展。

     

    我们可以比较一下,如果采用Adapter模式,原有的Email类是不能被显示转换为IValidatable接口的,也即是说如下的代码是不可行的:

    Email mail = new Email();

    IValidatable validate = ((IValidatable)mail).ValidateAddress();

    要调用ValidateAddress()方法,必须通过EmailAdapter类。然而通过静态横切技术,上面的代码就完全可行了。

     

    静态横切的技术在企业应用上还需要进一步验证和测试,不过遗憾的是,《在.Net中关于AOP的实现》一文采用的动态代理技术,是无法完成实现静态横切的目标的。

  • 相关阅读:
    产品管理:启示录 特约客户、产品验证、原型测试
    我对敏捷个人培训的“三不原则”
    《敏捷个人》周刊 第2期 (可下载)
    《敏捷个人》周刊 第7期 (可下载)
    敏捷个人2012.6月份线下活动报道:与北邮学子交流职业和成长
    《敏捷个人》周刊 第11期 (可下载)
    敏友的【敏捷个人】有感(15): 初探敏捷个人和敏捷开发的感想
    敏友的【敏捷个人】有感(14): 敏捷个人管理的历程
    从0开始在Android下开发生活方向盘应用(自绘雷达图)
    OpenExpressApp:OEA框架 2.9 PreAlpha 源码公布
  • 原文地址:https://www.cnblogs.com/wenming205/p/1763607.html
Copyright © 2011-2022 走看看