zoukankan      html  css  js  c++  java
  • POJ 2749--Building roads(2-SAT)

    题意:John有n个牛棚,每个牛棚都住着一些牛,这些牛喜欢串门(drop around, 学到了。。。),所以John想要建几条路把他们连接起来。他选择的方法是建两个相连中转站,然后每个牛棚连接其中一个中转站就好啦。现在的问题是有一些牛相互憎恨,所以不能连同一个中转站,而又有一些牛相互喜欢,必须连同一个中转站(再次感叹,人不如牛。。),现在要你来建边,要求,任意两个牛棚的距离的最大距离最短。两点距离是指哈密顿距离。比如u, v连的是同一个中转站s1,距离就是dis(u,s1)+dis(v,s1) 如果连不同的中转站就是dis(u,s1)+dis(v,s2)+dis(u,v),题意真的好不清楚啊

    输入就是每个牛棚的坐标的中转站的坐标,已经牛之间的憎恨和喜欢关系。

    输出最小距离。不能输出-1。

    题解:二分。。。然后符合要求的边建图,2-sat求解。建图时喜欢和讨厌都要建四条边,仔细读题。。。仔细建边。。。

    //我真的想吐槽我以前用的输入挂啊,我特么从哪搞来的辣鸡读入。。。用一次错一次。。。。

    这套题做的我心真累。。。没有特别难的。。。但是每一道都wa的想死。。。

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <string>
    #include <vector>
    #include <bitset>
    #include <cstdio>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <list>
    #include <map>
    #include <set>
    #define pk(x) printf("%d
    ", x)
    using namespace std;
    #define PI acos(-1.0)
    #define EPS 1E-6
    #define clr(x,c) memset(x,c,sizeof(x))
    typedef long long ll;
    const int N = 50000;
    const int M = 2000005;
    inline int Scan()
    {
        char ch = getchar();
        int data = 0;
        while (ch < '0' || ch > '9') ch = getchar();
        do {
            data = data*10 + ch-'0';
            ch = getchar();
        } while (ch >= '0' && ch <= '9');
        return data;
    }
    struct Edge {
        int from, to, next;
    } edge[M];
    int head[N];
    int cntE;
    void addedge(int u, int v) {
        edge[cntE].from = u; edge[cntE].to = v; edge[cntE].next = head[u]; head[u] = cntE++;
    }
    
    int dfn[N], low[N], idx;
    int stk[N], top;
    int in[N];
    int kind[N], cnt;
    
    void tarjan(int u)
    {
        dfn[u] = low[u] = ++idx;
        in[u] = true;
        stk[++top] = u;
        for (int i = head[u]; i != -1; i = edge[i].next) {
            int v = edge[i].to;
            if (!dfn[v]) tarjan(v), low[u] = min(low[u], low[v]);
            else if (in[v]) low[u] = min(low[u], dfn[v]);
        }
        if (low[u] == dfn[u]) {
            ++cnt;
            while (1) {
                int v = stk[top--]; kind[v] = cnt; in[v] = false;
                if (v == u) break;
            }
        }
    }
    
    void init() {
        cntE = 0;
        memset(head, -1, sizeof head);
        memset(dfn, 0, sizeof dfn);
        memset(in, false, sizeof in);
        idx = top = cnt = 0;
    }
    
    int ax[N], ay[N];
    int bx[N], by[N];
    int dis1[N], dis2[N];
    int n, a, b;
    int dis;
    
    int cal(int x1, int y1, int x2, int y2) {
        return abs(x1-x2) + abs(y1-y2);
    }
    
    bool ok(int x) {
        init();
        for (int i = 1; i <= n; ++i) {
            for (int j = i+1; j <= n; ++j) {
                if (dis1[i] + dis1[j] > x) addedge(i, n+j), addedge(j, n+i);
                if (dis2[i] + dis2[j] > x) addedge(i+n, j), addedge(j+n, i);
                if (dis1[i] + dis2[j] + dis > x) addedge(i, j), addedge(j+n, i+n);
                if (dis2[i] + dis1[j] + dis > x) addedge(i+n, j+n), addedge(j, i);
            }
        }
        for (int i = 0; i < a; ++i) {
            addedge(ax[i], ay[i] + n), addedge(ay[i] + n, ax[i]);
            addedge(ay[i], ax[i] + n), addedge(ax[i] + n, ay[i]);
        }
        for (int i = 0; i < b; ++i) {
            addedge(bx[i], by[i]), addedge(by[i], bx[i]);
            addedge(bx[i] + n, by[i] + n), addedge(by[i] + n, bx[i] + n);
        }
    
        for (int i = 1; i <= 2*n; ++i) if (!dfn[i]) tarjan(i);
    
        for (int i = 1; i <= n; i++) if (kind[i] == kind[i + n]) return false;
        return true;
    }
    
    int main() {
        int x1, y1, x2, y2;
        int x, y;
        while (~scanf("%d%d%d", &n, &a, &b)) {
            x1 = Scan(); y1 = Scan(); x2 = Scan(); y2 = Scan();
            dis = cal(x1, y1, x2, y2);
            int maxn = 0;
            for (int i = 1; i <= n; ++i) {
                x = Scan(); y = Scan();
                dis1[i] = cal(x, y, x1, y1);
                dis2[i] = cal(x, y, x2, y2);
                maxn = max(maxn, max(dis1[i], dis2[i]));
            }
            maxn = maxn * 2 + dis;
            for (int i = 0; i < a; ++i) ax[i] = Scan(), ay[i] = Scan();
            for (int i = 0; i < b; ++i) bx[i] = Scan(), by[i] = Scan();
    
            int l = 0, r = maxn;
            int ans = -1;
            while (l <= r) {
                int mid = (l+r) >> 1;
                if (ok(mid)) ans = mid, r = mid - 1;
                else l = mid + 1;
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    初步了解Ajax
    什么是applet
    FilterLog代码分析
    Async分析
    HttpServletRequest hrequest
    xml的定义用途
    企业级与应用级的区别
    未来规划
    黄金点游戏
    hashCode与eqauls
  • 原文地址:https://www.cnblogs.com/wenruo/p/5892077.html
Copyright © 2011-2022 走看看