Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
class Solution { public int largestRectangleArea(int[] h) { int n = h.length, i = 0, max = 0; Stack<Integer> s = new Stack<>(); while (i < n) { // as long as the current bar is shorter than the last one in the stack // we keep popping out the stack and calculate the area based on // the popped bar while (!s.isEmpty() && h[i] < h[s.peek()]) { // tricky part is how to handle the index of the left bound max = Math.max(max, h[s.pop()] * (i - (s.isEmpty() ? 0 : s.peek() + 1))); } // put current bar's index to the stack s.push(i++); } // finally pop out any bar left in the stack and calculate the area based on it while (!s.isEmpty()) { max = Math.max(max, h[s.pop()] * (n - (s.isEmpty() ? 0 : s.peek() + 1))); } return max; } }
参考 https://www.cnblogs.com/ganganloveu/p/4148303.html
class Solution { public int largestRectangleArea(int[] heights) { int ret = 0; Stack<Integer> stk = new Stack<>(); for(int i = 0; i < heights.length; i ++) { if(stk.empty() || stk.peek() <= heights[i]) stk.push(heights[i]); else { int count = 0; while(!stk.isEmpty() && stk.peek() > heights[i]) { count ++; ret = Math.max(ret, stk.peek()*count); stk.pop(); } while((count --)>0) stk.push(heights[i]); stk.push(heights[i]); } } int count = 1; while(!stk.isEmpty()) { ret = Math.max(ret, stk.peek()*count); stk.pop(); count ++; } return ret; } }
首先想到一种最直观的方法:把平面看做大矩阵,条形看做1,非条形看做0,寻找最大全1矩阵。
思路上是正确的,可以用DP来做,不过会超时。
网上看到一种借助栈的做法,代码很漂亮,但是解释都非常模糊,我看懂之后,决定仔细描述思路如下:
1、如果已知height数组是升序的,应该怎么做?
比如1,2,5,7,8
那么就是(1*5) vs. (2*4) vs. (5*3) vs. (7*2) vs. (8*1)
也就是max(height[i]*(size-i))
2、使用栈的目的就是构造这样的升序序列,按照以上方法求解。
但是height本身不一定是升序的,应该怎样构建栈?
比如2,1,5,6,2,3
(1)2进栈。s={2}, result = 0
(2)1比2小,不满足升序条件,因此将2弹出,并记录当前结果为2*1=2。
将2替换为1重新进栈。s={1,1}, result = 2
(3)5比1大,满足升序条件,进栈。s={1,1,5},result = 2
(4)6比5大,满足升序条件,进栈。s={1,1,5,6},result = 2
(5)2比6小,不满足升序条件,因此将6弹出,并记录当前结果为6*1=6。s={1,1,5},result = 6
2比5小,不满足升序条件,因此将5弹出,并记录当前结果为5*2=10(因为已经弹出的5,6是升序的)。s={1,1},result = 10
2比1大,将弹出的5,6替换为2重新进栈。s={1,1,2,2,2},result = 10
(6)3比2大,满足升序条件,进栈。s={1,1,2,2,2,3},result = 10
栈构建完成,满足升序条件,因此按照升序处理办法得到上述的max(height[i]*(size-i))=max{3*1, 2*2, 2*3, 2*4, 1*5, 1*6}=8<10
综上所述,result=10
10/09/2019
局部峰值:当前值大于右侧
class Solution { public int largestRectangleArea(int[] heights) { int res = 0; int he = heights.length; for(int i = 0; i < he; i++){ if(i+1 < he && heights[i+1] >= heights[i]) continue; int mh = heights[i]; for(int j = i; j >= 0; j--){ mh = Math.min(mh, heights[j]); int area = mh * (i - j + 1); res = Math.max(res, area); } } return res; } }