zoukankan      html  css  js  c++  java
  • 1462. Course Schedule IV

    There are a total of n courses you have to take, labeled from 0 to n-1.

    Some courses may have direct prerequisites, for example, to take course 0 you have first to take course 1, which is expressed as a pair: [1,0]

    Given the total number of courses n, a list of direct prerequisite pairs and a list of queries pairs.

    You should answer for each queries[i] whether the course queries[i][0] is a prerequisite of the course queries[i][1] or not.

    Return a list of boolean, the answers to the given queries.

    Please note that if course a is a prerequisite of course b and course b is a prerequisite of course c, then, course a is a prerequisite of course c.

    Example 1:

    Input: n = 2, prerequisites = [[1,0]], queries = [[0,1],[1,0]]
    Output: [false,true]
    Explanation: course 0 is not a prerequisite of course 1 but the opposite is true.
    

    Example 2:

    Input: n = 2, prerequisites = [], queries = [[1,0],[0,1]]
    Output: [false,false]
    Explanation: There are no prerequisites and each course is independent.
    

    Example 3:

    Input: n = 3, prerequisites = [[1,2],[1,0],[2,0]], queries = [[1,0],[1,2]]
    Output: [true,true]
    

    Example 4:

    Input: n = 3, prerequisites = [[1,0],[2,0]], queries = [[0,1],[2,0]]
    Output: [false,true]
    

    Example 5:

    Input: n = 5, prerequisites = [[0,1],[1,2],[2,3],[3,4]], queries = [[0,4],[4,0],[1,3],[3,0]]
    Output: [true,false,true,false]
    

    Constraints:

    • 2 <= n <= 100
    • 0 <= prerequisite.length <= (n * (n - 1) / 2)
    • 0 <= prerequisite[i][0], prerequisite[i][1] < n
    • prerequisite[i][0] != prerequisite[i][1]
    • The prerequisites graph has no cycles.
    • The prerequisites graph has no repeated edges.
    • 1 <= queries.length <= 10^4
    • queries[i][0] != queries[i][1]
    class Solution {
        public List<Boolean> checkIfPrerequisite(int n, int[][] prerequisites, int[][] queries) {
            List<Boolean> res = new ArrayList();
            int[][] disto = new int[n][n];
            for(int i = 0; i < n; i++){
                Arrays.fill(disto[i], 1000);
                disto[i][i] = 0;
            }
            for(int[] arr: prerequisites){
                disto[arr[0]][arr[1]] = 1;
            }
            for (int k = 0; k < n; k++) {
                for (int i = 0; i < n; i++) {
                    for (int j = 0; j < n; j++) {
                        if (disto[i][j] > disto[i][k] + disto[k][j])
                            disto[i][j] = disto[i][k] + disto[k][j];
                    }
                }
            }
            for(int i = 0; i < queries.length; i++){
                if(disto[queries[i][0]][queries[i][1]] == 1000) res.add(false);
                else res.add(true);
            }
            return res;
        }
    }

    floyd-walshall算法:用二维数组存放i 到 j 经过 k所需要的最小cost。

    这题就按正常先把数组设置好,然后就从query里查能不能从i到j即可(等于初始值就不可以)

  • 相关阅读:
    POJ 2411 Mondriaan's Dream( 轮廓线dp )
    BZOJ 4177: Mike的农场( 最小割 )
    BZOJ 2186: [Sdoi2008]沙拉公主的困惑( 数论 )
    2015.8.27
    BZOJ 1084: [SCOI2005]最大子矩阵( dp )
    BZOJ 1014: [JSOI2008]火星人prefix( splay + hash )
    BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
    BZOJ 1025: [SCOI2009]游戏( 背包dp )
    BZOJ 2795: [Poi2012]A Horrible Poem( hash )
    HDU 5636 Shortest Path 分治+搜索剪枝
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/13029961.html
Copyright © 2011-2022 走看看