zoukankan      html  css  js  c++  java
  • 1631. Path With Minimum Effort

    You are a hiker preparing for an upcoming hike. You are given heights, a 2D array of size rows x columns, where heights[row][col] represents the height of cell (row, col). You are situated in the top-left cell, (0, 0), and you hope to travel to the bottom-right cell, (rows-1, columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.

    A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.

    Return the minimum effort required to travel from the top-left cell to the bottom-right cell.

    Example 1:

    Input: heights = [[1,2,2],[3,8,2],[5,3,5]]
    Output: 2
    Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.
    This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.
    

    Example 2:

    Input: heights = [[1,2,3],[3,8,4],[5,3,5]]
    Output: 1
    Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].
    

    Example 3:

    Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]]
    Output: 0
    Explanation: This route does not require any effort.
    

    Constraints:

    • rows == heights.length
    • columns == heights[i].length
    • 1 <= rows, columns <= 100
    • 1 <= heights[i][j] <= 106
    class Solution {
        int[] DIR = new int[]{0, 1, 0, -1, 0};
        public int minimumEffortPath(int[][] heights) {
            int m = heights.length, n = heights[0].length;
            int[][] dist = new int[m][n];
            for (int i = 0; i < m; i++) Arrays.fill(dist[i], Integer.MAX_VALUE);
            
            PriorityQueue<int[]> minHeap = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
            minHeap.offer(new int[]{0, 0, 0}); // distance, row, col
            while (!minHeap.isEmpty()) {
                int[] top = minHeap.poll();
                int d = top[0], r = top[1], c = top[2];
                if (d > dist[r][c]) continue;
                if (r == m - 1 && c == n - 1) return d; // Reach to bottom right
                for (int i = 0; i < 4; i++) {
                    int nr = r + DIR[i], nc = c + DIR[i + 1];
                    if (nr >= 0 && nr < m && nc >= 0 && nc < n) {
                        int newDist = Math.max(d, Math.abs(heights[nr][nc] - heights[r][c]));
                        if (dist[nr][nc] > newDist) {
                            dist[nr][nc] = newDist;
                            minHeap.offer(new int[]{dist[nr][nc], nr, nc});
                        }
                    }
                }
            }
            return 0; // Unreachable code, Java require to return interger value.
        }
    }

    https://leetcode.com/problems/path-with-minimum-effort/discuss/909017/JavaPython-Dijikstra-Clean-and-Concise-O(MNlogMN)

  • 相关阅读:
    洛谷[P1002]过河卒
    ACM-Teleportation
    ACM-Team Tic Tac Toe
    Data_Structure04-树
    Data_Structure03-栈和队列
    Data_Structure02-线性表
    Data_Structure01-绪论
    C语言第二次实验报告
    C语言第一次实验报告
    mysql
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/14333356.html
Copyright © 2011-2022 走看看