zoukankan      html  css  js  c++  java
  • 3.11 时间处理对象

     

    pandas 时间对象处理

    时间序列类型
    
    时间戳:特定时刻
    固定时期:如2017年7月
    时间间隔:起始时间-结束时间
    
    
    Python标准库处理时间对象:datetime
    灵活处理时间对象:dateutil
    dateutil.parser.parse()
    成组处理时间对象:pandas
    pd.to_datetime()
    In [11]:
    import datetime
    import pandas as pd
    import numpy as np
    
    In [2]:
    datetime.datetime.strptime('2010-01-01','%Y-%m-%d')
    
    Out[2]:
    datetime.datetime(2010, 1, 1, 0, 0)
    In [3]:
    datetime.datetime.strptime('2010/01/01','%Y/%m/%d')
    
    Out[3]:
    datetime.datetime(2010, 1, 1, 0, 0)
    In [4]:
    import dateutil
    
    In [6]:
    dateutil.parser.parse('03/08/2020 14:35')
    
    Out[6]:
    datetime.datetime(2020, 3, 8, 14, 35)
    In [7]:
    dateutil.parser.parse('2020-Mar-8')
    
    Out[7]:
    datetime.datetime(2020, 3, 8, 0, 0)
    In [13]:
    pd.to_datetime(['2001-01-01','2020/Mar/08'])
    
    Out[13]:
    DatetimeIndex(['2001-01-01', '2020-03-08'], dtype='datetime64[ns]', freq=None)
     

    pandas-时间对象处理

    产生时间对象数组pd.date_range
    start 开始时间
    end 结束时间
    periods 时间长度
    freq 时间频率,默认为D,可选Hour,Week,Business,Sem,Month,(min)T(es),S(econd),A(year)
    In [15]:
    pd.date_range('2019/7/23','2021/7/23')
    
    Out[15]:
    DatetimeIndex(['2019-07-23', '2019-07-24', '2019-07-25', '2019-07-26',
                   '2019-07-27', '2019-07-28', '2019-07-29', '2019-07-30',
                   '2019-07-31', '2019-08-01',
                   ...
                   '2021-07-14', '2021-07-15', '2021-07-16', '2021-07-17',
                   '2021-07-18', '2021-07-19', '2021-07-20', '2021-07-21',
                   '2021-07-22', '2021-07-23'],
                  dtype='datetime64[ns]', length=732, freq='D')
    In [16]:
    pd.date_range('2019-7-23',periods=720)
    
    Out[16]:
    DatetimeIndex(['2019-07-23', '2019-07-24', '2019-07-25', '2019-07-26',
                   '2019-07-27', '2019-07-28', '2019-07-29', '2019-07-30',
                   '2019-07-31', '2019-08-01',
                   ...
                   '2021-07-02', '2021-07-03', '2021-07-04', '2021-07-05',
                   '2021-07-06', '2021-07-07', '2021-07-08', '2021-07-09',
                   '2021-07-10', '2021-07-11'],
                  dtype='datetime64[ns]', length=720, freq='D')
    In [17]:
    pd.date_range('2019/7/23',periods=30,freq='M')
    
    Out[17]:
    DatetimeIndex(['2019-07-31', '2019-08-31', '2019-09-30', '2019-10-31',
                   '2019-11-30', '2019-12-31', '2020-01-31', '2020-02-29',
                   '2020-03-31', '2020-04-30', '2020-05-31', '2020-06-30',
                   '2020-07-31', '2020-08-31', '2020-09-30', '2020-10-31',
                   '2020-11-30', '2020-12-31', '2021-01-31', '2021-02-28',
                   '2021-03-31', '2021-04-30', '2021-05-31', '2021-06-30',
                   '2021-07-31', '2021-08-31', '2021-09-30', '2021-10-31',
                   '2021-11-30', '2021-12-31'],
                  dtype='datetime64[ns]', freq='M')
    In [18]:
    pd.date_range('2019-7-23',periods=30,freq='W-MON')
    
    Out[18]:
    DatetimeIndex(['2019-07-29', '2019-08-05', '2019-08-12', '2019-08-19',
                   '2019-08-26', '2019-09-02', '2019-09-09', '2019-09-16',
                   '2019-09-23', '2019-09-30', '2019-10-07', '2019-10-14',
                   '2019-10-21', '2019-10-28', '2019-11-04', '2019-11-11',
                   '2019-11-18', '2019-11-25', '2019-12-02', '2019-12-09',
                   '2019-12-16', '2019-12-23', '2019-12-30', '2020-01-06',
                   '2020-01-13', '2020-01-20', '2020-01-27', '2020-02-03',
                   '2020-02-10', '2020-02-17'],
                  dtype='datetime64[ns]', freq='W-MON')
     
    B   business day frequency
    C   custom business day frequency (experimental)
    D   calendar day frequency
    W   weekly frequency
    M   month end frequency
    SM  semi-month end frequency (15th and end of month)
    BM  business month end frequency
    CBM custom business month end frequency
    MS  month start frequency
    SMS semi-month start frequency (1st and 15th)
    BMS business month start frequency
    CBMS    custom business month start frequency
    Q   quarter end frequency
    BQ  business quarter endfrequency
    QS  quarter start frequency
    BQS business quarter start frequency
    A   year end frequency
    BA  business year end frequency
    AS  year start frequency
    BAS business year start frequency
    BH  business hour frequency
    H   hourly frequency
    T, min  minutely frequency
    S   secondly frequency
    L, ms   milliseconds
    U, us   microseconds
    N   nanoseconds
    In [23]:
    pd.date_range('2019-7-23',periods=60,freq='B')    #B Business Day
    
    Out[23]:
    DatetimeIndex(['2019-07-23', '2019-07-24', '2019-07-25', '2019-07-26',
                   '2019-07-29', '2019-07-30', '2019-07-31', '2019-08-01',
                   '2019-08-02', '2019-08-05', '2019-08-06', '2019-08-07',
                   '2019-08-08', '2019-08-09', '2019-08-12', '2019-08-13',
                   '2019-08-14', '2019-08-15', '2019-08-16', '2019-08-19',
                   '2019-08-20', '2019-08-21', '2019-08-22', '2019-08-23',
                   '2019-08-26', '2019-08-27', '2019-08-28', '2019-08-29',
                   '2019-08-30', '2019-09-02', '2019-09-03', '2019-09-04',
                   '2019-09-05', '2019-09-06', '2019-09-09', '2019-09-10',
                   '2019-09-11', '2019-09-12', '2019-09-13', '2019-09-16',
                   '2019-09-17', '2019-09-18', '2019-09-19', '2019-09-20',
                   '2019-09-23', '2019-09-24', '2019-09-25', '2019-09-26',
                   '2019-09-27', '2019-09-30', '2019-10-01', '2019-10-02',
                   '2019-10-03', '2019-10-04', '2019-10-07', '2019-10-08',
                   '2019-10-09', '2019-10-10', '2019-10-11', '2019-10-14'],
                  dtype='datetime64[ns]', freq='B')
    In [24]:
    dt = _
    dt[0]
    
    Out[24]:
    Timestamp('2019-07-23 00:00:00', freq='B')
    In [27]:
    dt[0].to_pydatetime()
    
    Out[27]:
    datetime.datetime(2019, 7, 23, 0, 0)
     

    pandas 时间序列

    时间序列就是以时间对象为索引的 Series 或 Dataframe。
    datetime对象作为索引时是存储在 DatetimeIndex对象中的。
    时间序列特殊功能
        传入“年”或“年月”作为切片方式
        传入日期范围作为切片方式
        丰富的函数支持:resample, truncate,
    In [29]:
    sr = pd.Series(np.arange(100),index=pd.date_range('2020-3-8',periods=100))
    
    In [30]:
    sr
    
    Out[30]:
    2020-03-08     0
    2020-03-09     1
    2020-03-10     2
    2020-03-11     3
    2020-03-12     4
                  ..
    2020-06-11    95
    2020-06-12    96
    2020-06-13    97
    2020-06-14    98
    2020-06-15    99
    Freq: D, Length: 100, dtype: int32
    In [31]:
    sr.index
    
    Out[31]:
    DatetimeIndex(['2020-03-08', '2020-03-09', '2020-03-10', '2020-03-11',
                   '2020-03-12', '2020-03-13', '2020-03-14', '2020-03-15',
                   '2020-03-16', '2020-03-17', '2020-03-18', '2020-03-19',
                   '2020-03-20', '2020-03-21', '2020-03-22', '2020-03-23',
                   '2020-03-24', '2020-03-25', '2020-03-26', '2020-03-27',
                   '2020-03-28', '2020-03-29', '2020-03-30', '2020-03-31',
                   '2020-04-01', '2020-04-02', '2020-04-03', '2020-04-04',
                   '2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
                   '2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
                   '2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
                   '2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20',
                   '2020-04-21', '2020-04-22', '2020-04-23', '2020-04-24',
                   '2020-04-25', '2020-04-26', '2020-04-27', '2020-04-28',
                   '2020-04-29', '2020-04-30', '2020-05-01', '2020-05-02',
                   '2020-05-03', '2020-05-04', '2020-05-05', '2020-05-06',
                   '2020-05-07', '2020-05-08', '2020-05-09', '2020-05-10',
                   '2020-05-11', '2020-05-12', '2020-05-13', '2020-05-14',
                   '2020-05-15', '2020-05-16', '2020-05-17', '2020-05-18',
                   '2020-05-19', '2020-05-20', '2020-05-21', '2020-05-22',
                   '2020-05-23', '2020-05-24', '2020-05-25', '2020-05-26',
                   '2020-05-27', '2020-05-28', '2020-05-29', '2020-05-30',
                   '2020-05-31', '2020-06-01', '2020-06-02', '2020-06-03',
                   '2020-06-04', '2020-06-05', '2020-06-06', '2020-06-07',
                   '2020-06-08', '2020-06-09', '2020-06-10', '2020-06-11',
                   '2020-06-12', '2020-06-13', '2020-06-14', '2020-06-15'],
                  dtype='datetime64[ns]', freq='D')
    In [32]:
    sr['2020-3']
    
    Out[32]:
    2020-03-08     0
    2020-03-09     1
    2020-03-10     2
    2020-03-11     3
    2020-03-12     4
    2020-03-13     5
    2020-03-14     6
    2020-03-15     7
    2020-03-16     8
    2020-03-17     9
    2020-03-18    10
    2020-03-19    11
    2020-03-20    12
    2020-03-21    13
    2020-03-22    14
    2020-03-23    15
    2020-03-24    16
    2020-03-25    17
    2020-03-26    18
    2020-03-27    19
    2020-03-28    20
    2020-03-29    21
    2020-03-30    22
    2020-03-31    23
    Freq: D, dtype: int32
    In [33]:
    sr['2020-3':'2020-4']
    
    Out[33]:
    2020-03-08     0
    2020-03-09     1
    2020-03-10     2
    2020-03-11     3
    2020-03-12     4
    2020-03-13     5
    2020-03-14     6
    2020-03-15     7
    2020-03-16     8
    2020-03-17     9
    2020-03-18    10
    2020-03-19    11
    2020-03-20    12
    2020-03-21    13
    2020-03-22    14
    2020-03-23    15
    2020-03-24    16
    2020-03-25    17
    2020-03-26    18
    2020-03-27    19
    2020-03-28    20
    2020-03-29    21
    2020-03-30    22
    2020-03-31    23
    2020-04-01    24
    2020-04-02    25
    2020-04-03    26
    2020-04-04    27
    2020-04-05    28
    2020-04-06    29
    2020-04-07    30
    2020-04-08    31
    2020-04-09    32
    2020-04-10    33
    2020-04-11    34
    2020-04-12    35
    2020-04-13    36
    2020-04-14    37
    2020-04-15    38
    2020-04-16    39
    2020-04-17    40
    2020-04-18    41
    2020-04-19    42
    2020-04-20    43
    2020-04-21    44
    2020-04-22    45
    2020-04-23    46
    2020-04-24    47
    2020-04-25    48
    2020-04-26    49
    2020-04-27    50
    2020-04-28    51
    2020-04-29    52
    2020-04-30    53
    Freq: D, dtype: int32
    In [34]:
    sr.resample('W').sum()
    
    Out[34]:
    2020-03-08      0
    2020-03-15     28
    2020-03-22     77
    2020-03-29    126
    2020-04-05    175
    2020-04-12    224
    2020-04-19    273
    2020-04-26    322
    2020-05-03    371
    2020-05-10    420
    2020-05-17    469
    2020-05-24    518
    2020-05-31    567
    2020-06-07    616
    2020-06-14    665
    2020-06-21     99
    Freq: W-SUN, dtype: int32
    In [36]:
    sr.resample('M').sum()
    
    Out[36]:
    2020-03-31     276
    2020-04-30    1155
    2020-05-31    2139
    2020-06-30    1380
    Freq: M, dtype: int32
    In [37]:
    sr.resample('M').mean()
    
    Out[37]:
    2020-03-31    11.5
    2020-04-30    38.5
    2020-05-31    69.0
    2020-06-30    92.0
    Freq: M, dtype: float64
    In [38]:
    sr.truncate(before='2020-4-1')
    
    Out[38]:
    2020-04-01    24
    2020-04-02    25
    2020-04-03    26
    2020-04-04    27
    2020-04-05    28
                  ..
    2020-06-11    95
    2020-06-12    96
    2020-06-13    97
    2020-06-14    98
    2020-06-15    99
    Freq: D, Length: 76, dtype: int32
     

    pandas 文件处理

    数据文件常用格式:csv(以某间隔符分割数据)
    pandas读取文件:从文件名、URL、文件对象中加载数据
    read_csv        默认分隔符为逗号
    read_table    默认分隔符为制表符
    
    
    read_csv、read_table函数主要参数:
    sep 指定分隔符,可用正则表达式如's+'
    header=None 指定文件无列名
    name 指定列名
    index_col 指定某列作为索引
    skip_row 指定跳过某些行
    na_values 指定某些字符串表示缺失值
    parse_dates 指定某些列是否被解析为日期,类型为布尔值或列表
    In [39]:
    pd.read_csv('600519.csv')
    
    Out[39]:
     
     Unnamed: 0dateopenclosehighlowvolumecode
    0 0 2001-08-27 5.468 5.633 5.986 5.205 406318.00 600519
    1 1 2001-08-28 5.544 5.840 5.863 5.484 129647.79 600519
    2 2 2001-08-29 5.859 5.764 5.863 5.720 53252.75 600519
    3 3 2001-08-30 5.749 5.878 5.943 5.704 48013.06 600519
    4 4 2001-08-31 5.886 5.864 5.961 5.831 23231.48 600519
    ... ... ... ... ... ... ... ... ...
    3876 3876 2017-12-11 631.000 650.990 651.950 631.000 72849.00 600519
    3877 3877 2017-12-12 658.700 651.320 658.770 651.020 47889.00 600519
    3878 3878 2017-12-13 654.990 668.210 670.000 650.720 48502.00 600519
    3879 3879 2017-12-14 669.980 664.550 671.300 660.500 31967.00 600519
    3880 3880 2017-12-15 664.000 653.790 667.950 650.780 32255.00 600519

    3881 rows × 8 columns

    In [40]:
    pd.read_csv('600519.csv',index_col=0)
    
    Out[40]:
     
     dateopenclosehighlowvolumecode
    0 2001-08-27 5.468 5.633 5.986 5.205 406318.00 600519
    1 2001-08-28 5.544 5.840 5.863 5.484 129647.79 600519
    2 2001-08-29 5.859 5.764 5.863 5.720 53252.75 600519
    3 2001-08-30 5.749 5.878 5.943 5.704 48013.06 600519
    4 2001-08-31 5.886 5.864 5.961 5.831 23231.48 600519
    ... ... ... ... ... ... ... ...
    3876 2017-12-11 631.000 650.990 651.950 631.000 72849.00 600519
    3877 2017-12-12 658.700 651.320 658.770 651.020 47889.00 600519
    3878 2017-12-13 654.990 668.210 670.000 650.720 48502.00 600519
    3879 2017-12-14 669.980 664.550 671.300 660.500 31967.00 600519
    3880 2017-12-15 664.000 653.790 667.950 650.780 32255.00 600519

    3881 rows × 7 columns

    In [41]:
    pd.read_csv('600519.csv',index_col='date')
    
    Out[41]:
     
     Unnamed: 0openclosehighlowvolumecode
    date       
    2001-08-27 0 5.468 5.633 5.986 5.205 406318.00 600519
    2001-08-28 1 5.544 5.840 5.863 5.484 129647.79 600519
    2001-08-29 2 5.859 5.764 5.863 5.720 53252.75 600519
    2001-08-30 3 5.749 5.878 5.943 5.704 48013.06 600519
    2001-08-31 4 5.886 5.864 5.961 5.831 23231.48 600519
    ... ... ... ... ... ... ... ...
    2017-12-11 3876 631.000 650.990 651.950 631.000 72849.00 600519
    2017-12-12 3877 658.700 651.320 658.770 651.020 47889.00 600519
    2017-12-13 3878 654.990 668.210 670.000 650.720 48502.00 600519
    2017-12-14 3879 669.980 664.550 671.300 660.500 31967.00 600519
    2017-12-15 3880 664.000 653.790 667.950 650.780 32255.00 600519

    3881 rows × 7 columns

    In [42]:
    df = pd.read_csv('600519.csv',index_col='date')
    
    In [43]:
    df.index[0]
    
    Out[43]:
    '2001-08-27'
    In [44]:
    df.index
    
    Out[44]:
    Index(['2001-08-27', '2001-08-28', '2001-08-29', '2001-08-30', '2001-08-31',
           '2001-09-03', '2001-09-04', '2001-09-05', '2001-09-06', '2001-09-07',
           ...
           '2017-12-04', '2017-12-05', '2017-12-06', '2017-12-07', '2017-12-08',
           '2017-12-11', '2017-12-12', '2017-12-13', '2017-12-14', '2017-12-15'],
          dtype='object', name='date', length=3881)
    In [46]:
    pd.read_csv('600519.csv',index_col='date',parse_dates=True).index
    
    Out[46]:
    DatetimeIndex(['2001-08-27', '2001-08-28', '2001-08-29', '2001-08-30',
                   '2001-08-31', '2001-09-03', '2001-09-04', '2001-09-05',
                   '2001-09-06', '2001-09-07',
                   ...
                   '2017-12-04', '2017-12-05', '2017-12-06', '2017-12-07',
                   '2017-12-08', '2017-12-11', '2017-12-12', '2017-12-13',
                   '2017-12-14', '2017-12-15'],
                  dtype='datetime64[ns]', name='date', length=3881, freq=None)
    In [52]:
    pd.read_csv('600519.csv',index_col='date',parse_dates=['date']).index
    
    Out[52]:
    DatetimeIndex(['2001-08-27', '2001-08-28', '2001-08-29', '2001-08-30',
                   '2001-08-31', '2001-09-03', '2001-09-04', '2001-09-05',
                   '2001-09-06', '2001-09-07',
                   ...
                   '2017-12-04', '2017-12-05', '2017-12-06', '2017-12-07',
                   '2017-12-08', '2017-12-11', '2017-12-12', '2017-12-13',
                   '2017-12-14', '2017-12-15'],
                  dtype='datetime64[ns]', name='date', length=3881, freq=None)
    In [55]:
    pd.read_csv('600519.csv',header=None,names=list('abcdefgh'))
    
    Out[55]:
     
     abcdefgh
    0 NaN date open close high low volume code
    1 0.0 2001-08-27 5.468 5.633 5.986 5.205 406318.0 600519
    2 1.0 2001-08-28 5.544 5.84 5.863 5.484 129647.79 600519
    3 2.0 2001-08-29 5.859 5.764 5.863 5.72 53252.75 600519
    4 3.0 2001-08-30 5.749 5.878 5.943 5.704 48013.06 600519
    ... ... ... ... ... ... ... ... ...
    3877 3876.0 2017-12-11 631.0 650.99 651.95 631.0 72849.0 600519
    3878 3877.0 2017-12-12 658.7 651.32 658.77 651.02 47889.0 600519
    3879 3878.0 2017-12-13 654.99 668.21 670.0 650.72 48502.0 600519
    3880 3879.0 2017-12-14 669.98 664.55 671.3 660.5 31967.0 600519
    3881 3880.0 2017-12-15 664.0 653.79 667.95 650.78 32255.0 600519

    3882 rows × 8 columns

    In [56]:
    pd.read_csv('600519.csv',header=None,skiprows=[1,2,3])
    
    Out[56]:
     
     01234567
    0 NaN date open close high low volume code
    1 3.0 2001-08-30 5.749 5.878 5.943 5.704 48013.06 600519
    2 4.0 2001-08-31 5.886 5.864 5.961 5.831 23231.48 600519
    3 5.0 2001-09-03 5.894 5.861 5.953 5.839 22112.09 600519
    4 6.0 2001-09-04 5.864 5.936 6.034 5.844 37006.77 600519
    ... ... ... ... ... ... ... ... ...
    3874 3876.0 2017-12-11 631.0 650.99 651.95 631.0 72849.0 600519
    3875 3877.0 2017-12-12 658.7 651.32 658.77 651.02 47889.0 600519
    3876 3878.0 2017-12-13 654.99 668.21 670.0 650.72 48502.0 600519
    3877 3879.0 2017-12-14 669.98 664.55 671.3 660.5 31967.0 600519
    3878 3880.0 2017-12-15 664.0 653.79 667.95 650.78 32255.0 600519

    3879 rows × 8 columns

    In [58]:
    pd.read_csv('600519.csv',header=None,skiprows=[1,2,3],na_values=['None'])
    
    Out[58]:
     
     01234567
    0 NaN date open close high low volume code
    1 3.0 2001-08-30 5.749 5.878 5.943 5.704 48013.06 600519
    2 4.0 2001-08-31 5.886 5.864 5.961 5.831 23231.48 600519
    3 5.0 2001-09-03 5.894 5.861 5.953 5.839 22112.09 600519
    4 6.0 2001-09-04 5.864 5.936 6.034 5.844 37006.77 600519
    ... ... ... ... ... ... ... ... ...
    3874 3876.0 2017-12-11 631.0 650.99 651.95 631.0 72849.0 600519
    3875 3877.0 2017-12-12 658.7 651.32 658.77 651.02 47889.0 600519
    3876 3878.0 2017-12-13 654.99 668.21 670.0 650.72 48502.0 600519
    3877 3879.0 2017-12-14 669.98 664.55 671.3 660.5 31967.0 600519
    3878 3880.0 2017-12-15 664.0 653.79 667.95 650.78 32255.0 600519

    3879 rows × 8 columns

     

    pandas 支持的其他文件类型

    json,XML,HTML,数据库, pickle, excel.

    In [ ]:
     
    In [ ]:
    excel 是xml打包的文件
    
    In [ ]:
     
  • 相关阅读:
    Java单例模式
    Java中子类覆盖父类方法所必须满足的条件
    Java中break、continue及标签等跳转语句的使用[下]
    CSS控制图片显示区域
    rabbitmq 用户管理
    rabbitmq web管理页面无法访问
    centos6.5 以 zero-dependency Erlang from RabbitMQ 搭建环境
    docker 解决:Get http:///var/run/docker.sock/v1.19/version: dial unix /var/run/docker.sock: no such file or directory. Are you trying to connect to a TLS-enabled daemon without TLS?
    解决:java.lang.ArrayIndexOutOfBoundsException: 160 at com.alibaba.fastjson.serializer.SerializeWriter.writeStringWithDoubleQuote(SerializeWriter.java:868)
    centos 解决:Another app is currently holding the yum lock; waiting for it to exit
  • 原文地址:https://www.cnblogs.com/wenyule/p/12442713.html
Copyright © 2011-2022 走看看