zoukankan      html  css  js  c++  java
  • bzoj2301 [HAOI2011]Problem b

    Description

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

    Input

    第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

    Output

    共n行,每行一个整数表示满足要求的数对(x,y)的个数

    Sample Input

    2
    2 5 1 5 1
    1 5 1 5 2

    Sample Output

    14
    3

    HINT

    100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

    正解:莫比乌斯函数。

    莫比乌斯函数板子题。。我能说我是为了刷题量才做这题的吗。。

    易知$Ans=sum_{i=1}^{b}sum_{j=1}^{d}[gcd(i,j)==k]-sum_{i=1}^{a-1}sum_{j=1}^{d}[gcd(i,j)==k]-sum_{i=1}^{b}sum_{j=1}^{c-1}[gcd(i,j)==k]+sum_{i=1}^{a-1}sum_{j=1}^{b-1}[gcd(i,j)==k]$

    于是变成最裸的莫比乌斯函数推导。同除以k,然后把$mu(p)$的枚举提前,各种套路。。

    最后是$Ans=sum_{p=1}^{min(frac{b}{k},frac{d}{k})}mu(p)left lfloor frac{b}{kp} ight floorleft lfloor frac{d}{kp} ight floor-sum_{p=1}^{min(frac{a-1}{k},frac{d}{k})}mu(p)left lfloor frac{a-1}{kp} ight floorleft lfloor frac{d}{kp} ight floor-sum_{p=1}^{min(frac{b}{k},frac{c-1}{k})}mu(p)left lfloor frac{b}{kp} ight floorleft lfloor frac{c-1}{kp} ight floor
    sum_{p=1}^{min(frac{a-1}{k},frac{c-1}{k})}mu(p)left lfloor frac{a-1}{kp} ight floorleft lfloor frac{c-1}{kp} ight floor$

    然后数论分块,这道题就做完了。

     1 //It is made by wfj_2048~
     2 #include <algorithm>
     3 #include <iostream>
     4 #include <complex>
     5 #include <cstring>
     6 #include <cstdlib>
     7 #include <cstdio>
     8 #include <vector>
     9 #include <cmath>
    10 #include <queue>
    11 #include <stack>
    12 #include <map>
    13 #include <set>
    14 #define inf (1<<30)
    15 #define N (50010)
    16 #define il inline
    17 #define RG register
    18 #define ll long long
    19 #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
    20 
    21 using namespace std;
    22 
    23 int vis[N],mu[N],prime[N],n,m,a,b,c,d,k,cnt,pos;
    24 ll ans;
    25 
    26 il int gi(){
    27     RG int x=0,q=1; RG char ch=getchar(); while ((ch<'0' || ch>'9') && ch!='-') ch=getchar();
    28     if (ch=='-') q=-1,ch=getchar(); while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar(); return q*x;
    29 }
    30 
    31 il void sieve(){
    32     vis[1]=mu[1]=1;
    33     for (RG int i=2;i<N;++i){
    34     if (!vis[i]) vis[i]=1,mu[i]=-1,prime[++cnt]=i;
    35     for (RG int j=1,k=i*prime[j];j<=cnt && k<N;++j,k=i*prime[j]){
    36         vis[k]=1; if (i%prime[j]) mu[k]=-mu[i]; else break;
    37     }
    38     }
    39     for (RG int i=1;i<N;++i) mu[i]+=mu[i-1]; return;
    40 }
    41 
    42 il void work(){
    43     a=gi(),b=gi(),c=gi(),d=gi(),k=gi();
    44     n=b/k,m=d/k,pos=0,ans=0; if (n>m) swap(n,m);
    45     for (RG int i=1;i<=n;i=pos+1){
    46     pos=min(n/(n/i),m/(m/i));
    47     ans+=(ll)(mu[pos]-mu[i-1])*(ll)(n/i)*(ll)(m/i);
    48     }
    49     n=(a-1)/k,m=d/k,pos=0; if (n>m) swap(n,m);
    50     for (RG int i=1;i<=n;i=pos+1){
    51     pos=min(n/(n/i),m/(m/i));
    52     ans-=(ll)(mu[pos]-mu[i-1])*(ll)(n/i)*(ll)(m/i);
    53     }
    54     n=b/k,m=(c-1)/k,pos=0; if (n>m) swap(n,m);
    55     for (RG int i=1;i<=n;i=pos+1){
    56     pos=min(n/(n/i),m/(m/i));
    57     ans-=(ll)(mu[pos]-mu[i-1])*(ll)(n/i)*(ll)(m/i);
    58     }
    59     n=(a-1)/k,m=(c-1)/k,pos=0; if (n>m) swap(n,m);
    60     for (RG int i=1;i<=n;i=pos+1){
    61     pos=min(n/(n/i),m/(m/i));
    62     ans+=(ll)(mu[pos]-mu[i-1])*(ll)(n/i)*(ll)(m/i);
    63     }
    64     printf("%lld
    ",ans); return;
    65 }
    66 
    67 int main(){
    68     File("b");
    69     sieve();
    70     RG int T=gi();
    71     while (T--) work();
    72     return 0;
    73 }
  • 相关阅读:
    Basic knowledge of html (keep for myself)
    科学技术法转成BigDemcial
    SimpleDateFormat
    log4j 配置实例
    R 实例1
    yield curve
    if-else的优化举例
    十二、高级事件处理
    十一、Swing
    十、输入/输出
  • 原文地址:https://www.cnblogs.com/wfj2048/p/6558058.html
Copyright © 2011-2022 走看看