zoukankan      html  css  js  c++  java
  • bzoj4916 神犇和蒟蒻

    Description

    很久很久以前,有一只神犇叫yzy;
    很久很久之后,有一只蒟蒻叫lty; 

    Input

    请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;

    Output

    请你输出一个整数A=sum_{i=1}^N{mu (i^2)};
    请你输出一个整数B=sum_{i=1}^N{varphi (i^2)};

    Sample Input

    1

    Sample Output

    1
    1

    正解:杜教筛。

    第一问答案是$1$。

    第二问,先给个结论:$varphi (n^{2})=nvarphi (n)$,于是我们要求$F(n)=sum_{i=1}^{n}ivarphi (i)$。

    设$f(n)=nvarphi (n)$,考虑$f$与$id$函数的狄利克雷卷积,$id*f(n)=sum_{d|n}id(d)f(frac{n}{d})$

    $id*f(n)=nsum_{d|n}varphi (frac{n}{d})=n^{2}$,那么$sum_{i=1}^{n}id*f(i)=frac{n(n+1)(2n+1)}{6}$

    又$sum_{i=1}^{n}id*f(i)=sum_{i=1}^{n}sum_{d|i}id(d)f(frac{i}{d})=sum_{ijleq n}id(i)f(j)=sum_{i=1}^{n}id(i)F(left lfloor frac{n}{i} ight floor)$

    于是$F(n)=id(1)F(n)=sum_{i=1}^{n}id*f(i)-sum_{i=2}^{n}id(i)F(left lfloor frac{n}{i} ight floor)=frac{n(n+1)(2n+1)}{6}-sum_{i=2}^{n}id(i)F(left lfloor frac{n}{i} ight floor)$

    然后直接用杜教筛的套路:数论分块+记忆化搜索就行了。

     1 //It is made by wfj_2048~
     2 #include <algorithm>
     3 #include <iostream>
     4 #include <cstring>
     5 #include <cstdlib>
     6 #include <cstdio>
     7 #include <vector>
     8 #include <cmath>
     9 #include <queue>
    10 #include <stack>
    11 #include <map>
    12 #include <set>
    13 #define rhl (1000000007)
    14 #define N (3000010)
    15 #define inf (1<<30)
    16 #define il inline
    17 #define RG register
    18 #define ll long long
    19 #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
    20 
    21 using namespace std;
    22 
    23 int vis[N],phi[N],prime[N],n,maxn,cnt;
    24 ll f[N],In2,In6;
    25 
    26 map <ll,ll> F,vi;
    27 
    28 il int gi(){
    29     RG int x=0,q=1; RG char ch=getchar();
    30     while ((ch<'0' || ch>'9') && ch!='-') ch=getchar();
    31     if (ch=='-') q=-1,ch=getchar();
    32     while (ch>='0' && ch<='9') x=x*10+ch-48,ch=getchar();
    33     return q*x;
    34 }
    35 
    36 il ll qpow(RG ll a,RG ll b){
    37     RG ll ans=1;
    38     while (b){
    39     if (b&1) ans=ans*a%rhl;
    40     a=a*a%rhl,b>>=1;
    41     }
    42     return ans;
    43 }
    44 
    45 il void sieve(){
    46     phi[1]=f[1]=1;
    47     for (RG int i=2;i<=maxn;++i){
    48     if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
    49     for (RG int j=1,k;j<=cnt;++j){
    50         k=i*prime[j]; if (k>maxn) break; vis[k]=1;
    51         if (i%prime[j]) phi[k]=phi[i]*phi[prime[j]];
    52         else{ phi[k]=phi[i]*prime[j]; break; }
    53     }
    54     }
    55     for (RG int i=2;i<=maxn;++i) f[i]=(f[i-1]+(ll)i*(ll)phi[i])%rhl; return;
    56 }
    57 
    58 il ll du(RG ll n){
    59     if (n<=maxn) return f[n]; if (vi[n]) return F[n];
    60     RG ll ans=n*(n+1)%rhl*(2*n+1)%rhl*In6%rhl,pos; vi[n]=1;
    61     for (RG ll i=2;i<=n;i=pos+1){
    62     pos=n/(n/i);
    63     ans-=(i+pos)*(pos-i+1)%rhl*du(n/i)%rhl*In2%rhl;
    64     if (ans<0) ans+=rhl;
    65     }
    66     return F[n]=ans;
    67 }
    68 
    69 il void work(){
    70     n=gi(),puts("1"),maxn=min(3000000,n),sieve();
    71     In2=qpow(2,rhl-2),In6=qpow(6,rhl-2);
    72     printf("%lld
    ",du(n)); return;
    73 }
    74 
    75 int main(){
    76     File("phi");
    77     work();
    78     return 0;
    79 }
  • 相关阅读:
    Activity表单传值问题
    求助~!线程里不能MediaRecorder.start()
    获取浏览器的宽高:
    WebStorm快捷键收集
    CSS中强大的EM
    常用global.css
    常用base.css
    自适应网页设计的方法(手机端良好的访问体验)
    还需要学习的十二种CSS选择器
    js 根据屏幕大小调用不同的css文件
  • 原文地址:https://www.cnblogs.com/wfj2048/p/6994613.html
Copyright © 2011-2022 走看看