zoukankan      html  css  js  c++  java
  • HDU

    Time Limit: 1000MS
    Memory Limit: 32768KB
    64bit IO Format: %I64d & %I64u

    Status

    Description

    Lele now is thinking about a simple function f(x).

    If x < 10 f(x) = x.
    If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
    And ai(0<=i<=9) can only be 0 or 1 .

    Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
     

    Input

    The problem contains mutiple test cases.Please process to the end of file.
    In each case, there will be two lines.
    In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
    In the second line , there are ten integers represent a0 ~ a9.
     

    Output

    For each case, output f(k) % m in one line.
     

    Sample Input

    10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
     

    Sample Output

    45 104


    题意: f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),ai(0<=i<=9)为0或1

    思路:能够用递推做。只是太耗时了,准TLE。用转化为矩阵,再用高速幂,复杂度大大的降低。

    盗用一张图:


    把问题转化为求矩阵的n-9次幂即可了;


    <span style="font-size:18px;">#include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <algorithm>
    #include <queue>
    #include <stack>
    using namespace std;
    
    const double PI = acos(-1.0);
    const double e = 2.718281828459;
    const double eps = 1e-8;
    int m, k;
    struct Matrix
    {
        int m[10][10];
        void clear()
        {
            memset(m, 0, sizeof(m));
        }
    };
    
    Matrix multi(Matrix a, Matrix b)
    {   //矩阵乘法
        Matrix t;
        t.clear();
        for(int i = 0; i < 10; i++)
        {
            for(int j = 0; j < 10; j++)
            {
                for(int k = 0; k < 10; k++)
                {
                    t.m[i][j] += a.m[i][k]*b.m[k][j];
                }
                t.m[i][j] %= m;
            }
        }
        return t;
    }
    
    Matrix pow_mod(Matrix a, Matrix b)
    {   //高速幂(重复平发法)
        while(k)
        {
            if(k&1)
                b = multi(a, b);
            a = multi(a, a);
            k >>= 1;
        }
        return b;
    }
    
    int main()
    {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        while(cin>>k>>m)
        {
            Matrix a, b;
            a.clear();
            b.clear(); //构造矩阵a
            for(int i = 1; i < 10; i++)
            {
                a.m[i][i-1] = 1;
            }
            //b为单元矩阵,相当于整数的1
            for(int i = 0; i < 10; i++)
            {
                b.m[i][i] = 1;
            }
            for(int i = 0; i < 10; i++)
            {
                scanf("%d", &a.m[0][i]);
            }
            if(k < 10)
            {
                printf("%d
    ", k%m);
                continue;
            }
            k -= 9;
            b = pow_mod(a, b); //求a的 n-9 次幂并保存在 b 中
            int ans = 0;
            for(int i = 0; i < 10; i++)
                ans = (ans+b.m[0][i]*(9-i))%m; //最后乘上f[9],f[8],f[7]...f[0]
            cout<<ans<<endl;
        }
        return 0;
    }</span>
    
    


  • 相关阅读:
    实现自己的类加载时,重写方法loadClass与findClass的区别
    MQ中将消息发送至远程队列的配置
    IOS开发之控件篇UITabBarControllor第一章
    IOS开发-图片尺寸
    IOS开发之进阶篇第一章
    AStar算法(转载)
    GEF
    WizardDialog 进度条使用记录
    Struts2学习笔记-jsp中引用struts2框架
    Struts2学习笔记-基本结构
  • 原文地址:https://www.cnblogs.com/wgwyanfs/p/6892993.html
Copyright © 2011-2022 走看看