Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
Sample Output
45 104
题意: f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),ai(0<=i<=9)为0或1
思路:能够用递推做。只是太耗时了,准TLE。用转化为矩阵,再用高速幂,复杂度大大的降低。
盗用一张图:
把问题转化为求矩阵的n-9次幂即可了;
<span style="font-size:18px;">#include <cstdio> #include <iostream> #include <cstring> #include <cmath> #include <string> #include <algorithm> #include <queue> #include <stack> using namespace std; const double PI = acos(-1.0); const double e = 2.718281828459; const double eps = 1e-8; int m, k; struct Matrix { int m[10][10]; void clear() { memset(m, 0, sizeof(m)); } }; Matrix multi(Matrix a, Matrix b) { //矩阵乘法 Matrix t; t.clear(); for(int i = 0; i < 10; i++) { for(int j = 0; j < 10; j++) { for(int k = 0; k < 10; k++) { t.m[i][j] += a.m[i][k]*b.m[k][j]; } t.m[i][j] %= m; } } return t; } Matrix pow_mod(Matrix a, Matrix b) { //高速幂(重复平发法) while(k) { if(k&1) b = multi(a, b); a = multi(a, a); k >>= 1; } return b; } int main() { //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); while(cin>>k>>m) { Matrix a, b; a.clear(); b.clear(); //构造矩阵a for(int i = 1; i < 10; i++) { a.m[i][i-1] = 1; } //b为单元矩阵,相当于整数的1 for(int i = 0; i < 10; i++) { b.m[i][i] = 1; } for(int i = 0; i < 10; i++) { scanf("%d", &a.m[0][i]); } if(k < 10) { printf("%d ", k%m); continue; } k -= 9; b = pow_mod(a, b); //求a的 n-9 次幂并保存在 b 中 int ans = 0; for(int i = 0; i < 10; i++) ans = (ans+b.m[0][i]*(9-i))%m; //最后乘上f[9],f[8],f[7]...f[0] cout<<ans<<endl; } return 0; }</span>