zoukankan      html  css  js  c++  java
  • POJ

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 19826   Accepted: 5299

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
      statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    Source




    还是扩展欧几里得,这里注意要简化一下原来的式子


    AC代码:

    #include <map>
    #include <set>
    #include <cmath>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <cstdio>
    #include <cctype>
    #include <string>
    #include <vector>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define INF 0x7fffffff
    using namespace std;
    
    LL gcd(LL a, LL b) {
    	return b == 0 ?

    a : gcd(b, a % b); } void exgcd(LL a, LL b, LL& x, LL& y) { if(b == 0) { x = 1; y = 0; } else { exgcd(b, a % b, y, x); y -= x * (a / b); } } int main() { LL A, B, C, k; while(scanf("%I64d %I64d %I64d %I64d", &A, &B, &C, &k) != EOF) { if(A == 0 && B == 0 && C == 0 && k == 0) break; if(A == B) { printf("0 "); continue; } LL a = C; LL b = (1LL << k); LL c = gcd(a, b); LL d = B - A; if(d % c != 0) { printf("FOREVER "); continue; } a /= c;//这里要进行简化。由于可能产生多余的次数 b /= c; d /= c; LL p, q; exgcd(a, b, p, q);//这里求的是最简ax+by=gcd(a,b)的一组x,y的解 printf("%I64d ", (p * (d / gcd(a, b)) % b + b) % b); } return 0; }













  • 相关阅读:
    U盘安装CentOS 7系统
    生产库中遇到mysql的子查询
    mysql 储存类型自增主键区别
    MySQL主从数据库同步延迟问题解决
    MySQL 加锁处理分析
    120篇精华文章打包送,干货慎入!
    mysql批量删除相同前缀的表和修改表名
    用pt-online-schema-change给大表在线加字段的时候导致从库数据丢失的问题
    【MySQL】online ddl 工具之pt-online-schema-change
    互联网公司为啥不使用mysql分区表?
  • 原文地址:https://www.cnblogs.com/wgwyanfs/p/7080288.html
Copyright © 2011-2022 走看看