zoukankan      html  css  js  c++  java
  • POJ

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 19826   Accepted: 5299

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
      statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    Source




    还是扩展欧几里得,这里注意要简化一下原来的式子


    AC代码:

    #include <map>
    #include <set>
    #include <cmath>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <cstdio>
    #include <cctype>
    #include <string>
    #include <vector>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define INF 0x7fffffff
    using namespace std;
    
    LL gcd(LL a, LL b) {
    	return b == 0 ?

    a : gcd(b, a % b); } void exgcd(LL a, LL b, LL& x, LL& y) { if(b == 0) { x = 1; y = 0; } else { exgcd(b, a % b, y, x); y -= x * (a / b); } } int main() { LL A, B, C, k; while(scanf("%I64d %I64d %I64d %I64d", &A, &B, &C, &k) != EOF) { if(A == 0 && B == 0 && C == 0 && k == 0) break; if(A == B) { printf("0 "); continue; } LL a = C; LL b = (1LL << k); LL c = gcd(a, b); LL d = B - A; if(d % c != 0) { printf("FOREVER "); continue; } a /= c;//这里要进行简化。由于可能产生多余的次数 b /= c; d /= c; LL p, q; exgcd(a, b, p, q);//这里求的是最简ax+by=gcd(a,b)的一组x,y的解 printf("%I64d ", (p * (d / gcd(a, b)) % b + b) % b); } return 0; }













  • 相关阅读:
    MySQL 8 新特性之持久化全局变量的修改
    MySQL 8 新特性之Invisible Indexes
    pt-align
    Go碎碎念
    flask开发过程中的常见问题
    MySQL高可用方案MHA自动Failover与手动Failover的实践及原理
    MySQL高可用方案MHA在线切换的步骤及原理
    深度解析MySQL启动时报“The server quit without updating PID file”错误的原因
    MongoDB副本集的常用操作及原理
    MongoDB副本集的搭建
  • 原文地址:https://www.cnblogs.com/wgwyanfs/p/7080288.html
Copyright © 2011-2022 走看看