zoukankan      html  css  js  c++  java
  • POJ

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 19826   Accepted: 5299

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
      statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    Source




    还是扩展欧几里得,这里注意要简化一下原来的式子


    AC代码:

    #include <map>
    #include <set>
    #include <cmath>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <cstdio>
    #include <cctype>
    #include <string>
    #include <vector>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define INF 0x7fffffff
    using namespace std;
    
    LL gcd(LL a, LL b) {
    	return b == 0 ?

    a : gcd(b, a % b); } void exgcd(LL a, LL b, LL& x, LL& y) { if(b == 0) { x = 1; y = 0; } else { exgcd(b, a % b, y, x); y -= x * (a / b); } } int main() { LL A, B, C, k; while(scanf("%I64d %I64d %I64d %I64d", &A, &B, &C, &k) != EOF) { if(A == 0 && B == 0 && C == 0 && k == 0) break; if(A == B) { printf("0 "); continue; } LL a = C; LL b = (1LL << k); LL c = gcd(a, b); LL d = B - A; if(d % c != 0) { printf("FOREVER "); continue; } a /= c;//这里要进行简化。由于可能产生多余的次数 b /= c; d /= c; LL p, q; exgcd(a, b, p, q);//这里求的是最简ax+by=gcd(a,b)的一组x,y的解 printf("%I64d ", (p * (d / gcd(a, b)) % b + b) % b); } return 0; }













  • 相关阅读:
    提交按钮变灰
    解析spring启动加载dubbo过程
    shiro的SecurityUtis
    spring集成shiro登陆流程(下)
    spring集成shiro登陆流程(上)
    shiro的DelegatingFilterProxy怎么找到ShiroFilterFactoryBean
    sql多表关联
    android常用控件
    android控件之EditText
    浅议iOS网络数据解析
  • 原文地址:https://www.cnblogs.com/wgwyanfs/p/7080288.html
Copyright © 2011-2022 走看看