题意很好懂,但是不好下手。这里可以把每个点编个号(1-25),看做一个点,然后能够到达即为其两个点的编号之间有边,形成一幅图,然后求最短路的问题。并且pre数组记录前驱节点,print_path()方法可用算法导论上的。
代码:

#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <set> #define Mod 1000000007 #define INT 2147483647 #define pi acos(-1.0) #define eps 1e-3 #define lll __int64 #define ll long long using namespace std; #define N 100007 const int INF = Mod; vector<pair<int,int> > edge[N]; set<pair<int,int> > que; int a[6][6],n; int d[N],pre[N]; void print_path(int s,int v) { if(v == s) printf("(%d, %d) ",(s-1)/5,(s%5+5-1)%5); else { print_path(s,pre[v]); printf("(%d, %d) ",(v-1)/5,(v%5+5-1)%5); } } int ok(int x,int y) { if(x >= 0 && x < 5 && y >= 0 && y < 5) return 1; return 0; } void SPFA() { int i; for(i=2;i<=n;i++) d[i] = INF; d[1] = 0; que.insert(make_pair(d[1],1)); while(!que.empty()) { int v = que.begin()->second; que.erase(que.begin()); for(i=0;i<edge[v].size();i++) { int to = edge[v][i].first; int cost = edge[v][i].second; if(d[v] + cost < d[to]) { que.erase(make_pair(d[to],to)); d[to] = d[v] + cost; pre[to] = v; que.insert(make_pair(d[to],to)); } } } print_path(1,n); } int main() { int i,j; for(i=0;i<5;i++) for(j=0;j<5;j++) scanf("%d",&a[i][j]); for(i=0;i<5;i++) { for(j=0;j<5;j++) { if(a[i][j] == 0) { int ka = i*5 + j + 1,kb; if(ok(i+1,j) && a[i+1][j] == 0) { kb = ka + 5; edge[ka].push_back(make_pair(kb,1)); } if(ok(i,j+1) && a[i][j+1] == 0) { kb = ka+1; edge[ka].push_back(make_pair(kb,1)); } if(ok(i-1,j) && a[i-1][j] == 0) { kb = ka-5; edge[ka].push_back(make_pair(kb,1)); } if(ok(i,j-1) && a[i][j-1] == 0) { kb = ka-1; edge[ka].push_back(make_pair(kb,1)); } } } } n = 25; SPFA(); return 0; }