zoukankan      html  css  js  c++  java
  • MapReduce 编程模板编写【分析网站基本指标UV】程序

    1.网站基本指标的几个概念

    PV: page view 浏览量

    页面的浏览次数,用户每打开一次页面就记录一次。

    UV:unique visitor 独立访客数

    一天内访问某站点的人数(以cookie为例) 但是如果用户把浏览器cookie给删了之后再次访问会影响记录。

    VV: visit view 访客的访问次数

    记录所有访客一天内访问了多少次网站,访客完成访问直到浏览器关闭算一次。

    IP:独立ip数

    指一天内使用不同ip地址的用户访问网站的数量。

    2.编写MapReduce编程模板

    Driver

    package mapreduce;
    ​
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    ​
    public class MRDriver extends Configured implements Tool {
    ​
        public int run(String[] args) throws Exception {
            //创建job
            Job job = Job.getInstance(this.getConf(),"mr-demo");
            job.setJarByClass(MRDriver.class);
    ​
            //input 默认从hdfs读取数据 将每一行转换成key-value
            Path inPath = new Path(args[0]);
            FileInputFormat.setInputPaths(job,inPath);
    ​
            //map 一行调用一次Map方法  对每一行数据进行分割
            job.setMapperClass(null);
            job.setMapOutputKeyClass(null);
            job.setMapOutputValueClass(null);
    ​
            //shuffle
            job.setPartitionerClass(null);//分组
            job.setGroupingComparatorClass(null);//分区
            job.setSortComparatorClass(null);//排序
    ​
            //reduce 每有一条key value调用一次reduce方法
            job.setReducerClass(null);
            job.setOutputKeyClass(null);
            job.setOutputValueClass(null);
    ​
            //output
            Path outPath = new Path(args[1]);
            //this.getConf()来自父类 内容为空可以自己set配置信息
            FileSystem fileSystem = FileSystem.get(this.getConf());
            //如果目录已经存在则删除
            if(fileSystem.exists(outPath)){
                //if path is a directory and set to true
                fileSystem.delete(outPath,true);
            }
            FileOutputFormat.setOutputPath(job, outPath);
            //submit
            boolean isSuccess = job.waitForCompletion(true);
            return isSuccess ? 0:1;
        }
    ​
        public static void main(String[] args) {
            Configuration configuration = new Configuration();
            try {
                int status = ToolRunner.run(configuration, new MRDriver(), args);
                System.exit(status);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
    ​

    Mapper

    public class MRModelMapper extends Mapper<LongWritable,Text,Text,LongWritable> {
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            /**
             * 实现自己的业务逻辑
             */
        }
    }

    Reduce

    public class MRModelReducer extends Reducer<Text,LongWritable,Text,LongWritable> {
    ​
        @Override
        protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
            /**
             * 根据业务需求自己实现
             */
        }
    }

    3. 统计每个城市的UV数

    分析需求:

    UV:unique view 唯一访问数,一个用户记一次

    map:

    key: CityId (城市id) 数据类型: Text

    value: guid (用户id) 数据类型:Text

    shuffle:

    key: CityId

    value: {guid guid guid..}

    reduce:

    key: CityId

    value: 访问数 即shuffle输出value的集合大小

    output:

    key : CityId

    value : 访问数

    MRDriver.java mapreduce执行过程

    
    
    package mapreduce;
    ​
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    ​
    public class MRDriver extends Configured implements Tool {
    ​
        public int run(String[] args) throws Exception {
            //创建job
            Job job = Job.getInstance(this.getConf(),"mr-demo");
            job.setJarByClass(MRDriver.class);
    ​
            //input 默认从hdfs读取数据 将每一行转换成key-value
            Path inPath = new Path(args[0]);
            FileInputFormat.setInputPaths(job,inPath);
    ​
            //map 一行调用一次Map方法  对每一行数据进行分割
            job.setMapperClass(MRMapper.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
    ​
           /* //shuffle
            job.setPartitionerClass(null);//分组
            job.setGroupingComparatorClass(null);//分区
            job.setSortComparatorClass();//排序
    */
            //reduce
            job.setReducerClass(MRReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
    ​
            //output
            Path outPath = new Path(args[1]);
            FileSystem fileSystem = FileSystem.get(this.getConf());
            if(fileSystem.exists(outPath)){
                //if path is a directory and set to true
                fileSystem.delete(outPath,true);
            }
            FileOutputFormat.setOutputPath(job, outPath);
            
            //submit
            boolean isSuccess = job.waitForCompletion(true);
            return isSuccess ? 0:1;
        }
    ​
        public static void main(String[] args) {
            Configuration configuration = new Configuration();
            try {
                int status = ToolRunner.run(configuration, new MRDriver(), args);
                System.exit(status);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

    MRMapper.java

    package mapreduce;
    ​
    import java.io.IOException;
    ​
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    ​
    public class MRMapper extends Mapper<LongWritable,Text,Text,Text> {
        private Text mapOutKey = new Text();
        private Text mapOutKey1 = new Text();
        
        //一行调用一次Map方法  对每一行数据进行分割
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            
            //获得每行的值
            String str = value.toString();
            //按空格得到每个item
            String[] items = str.split("	");
            
            if (items[24]!=null) {
                this.mapOutKey.set(items[24]);
                if (items[5]!=null) {
                    this.mapOutKey1.set(items[5]);
                }
            }
            context.write(mapOutKey, mapOutKey1);
        }
        
    }

    MPReducer.java

    package mapreduce;
    ​
    import java.io.IOException;
    import java.util.HashSet;
    ​
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    ​
    public class MRReducer extends Reducer<Text, Text, Text, IntWritable>{
    ​
        //每有一个key value数据 就执行一次reduce方法
        @Override
        protected void reduce(Text key, Iterable<Text> texts, Reducer<Text, Text, Text, IntWritable>.Context context)
                throws IOException, InterruptedException {
            
            HashSet<String> set = new HashSet<String>();
            
            for (Text text : texts) {
                set.add(text.toString());
            }
            
            context.write(key,new IntWritable(set.size()));
        
        }   
    }
     

    4.MapReduce执行wordcount过程理解

    input:默认从HDFS读取数据

     Path inPath = new Path(args[0]);
     FileInputFormat.setInputPaths(job,inPath);

    将每一行数据转换为key-value(分割),这一步由MapReduce框架自动完成。

    输出行的偏移量和行的内容

     

    mapper: 分词输出

    数据过滤,数据补全,字段格式化

    输入:input的输出

    将分割好的<key,value>对交给用户定义的map方法进行处理,生成新的<key,value>对。

    一行调用一次map方法。

    统计word中的map:

    shuffle: 分区,分组,排序

    输出:

    <Bye,1>

    <Hello,1>

    <World,1,1>

    得到map输出的<key,value>对,Mapper会将他们按照key进行排序,得到mapper的最终输出结果。

    Reduce :每一条Keyvalue调用一次reduce方法

    将相同Key的List<value>,进行相加求和

    output:将reduce输出写入hdfs

  • 相关阅读:
    nepenthes用法
    honeydctl命令
    honeyd路由拓扑
    Linux Samba服务器的安装
    honeyd使用
    FreeRTOS 事件标志组
    epoll函数
    Java程序:从命令行接收多个数字,求和并输出结果
    《大道至简》第一章读后感
    【诗词歌赋】 杂感- 贺小妹
  • 原文地址:https://www.cnblogs.com/whcwkw1314/p/8971760.html
Copyright © 2011-2022 走看看