1.网站基本指标的几个概念
PV: page view 浏览量
页面的浏览次数,用户每打开一次页面就记录一次。
UV:unique visitor 独立访客数
一天内访问某站点的人数(以cookie为例) 但是如果用户把浏览器cookie给删了之后再次访问会影响记录。
VV: visit view 访客的访问次数
记录所有访客一天内访问了多少次网站,访客完成访问直到浏览器关闭算一次。
IP:独立ip数
指一天内使用不同ip地址的用户访问网站的数量。
2.编写MapReduce编程模板
Driver
package mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class MRDriver extends Configured implements Tool { public int run(String[] args) throws Exception { //创建job Job job = Job.getInstance(this.getConf(),"mr-demo"); job.setJarByClass(MRDriver.class); //input 默认从hdfs读取数据 将每一行转换成key-value Path inPath = new Path(args[0]); FileInputFormat.setInputPaths(job,inPath); //map 一行调用一次Map方法 对每一行数据进行分割 job.setMapperClass(null); job.setMapOutputKeyClass(null); job.setMapOutputValueClass(null); //shuffle job.setPartitionerClass(null);//分组 job.setGroupingComparatorClass(null);//分区 job.setSortComparatorClass(null);//排序 //reduce 每有一条key value调用一次reduce方法 job.setReducerClass(null); job.setOutputKeyClass(null); job.setOutputValueClass(null); //output Path outPath = new Path(args[1]); //this.getConf()来自父类 内容为空可以自己set配置信息 FileSystem fileSystem = FileSystem.get(this.getConf()); //如果目录已经存在则删除 if(fileSystem.exists(outPath)){ //if path is a directory and set to true fileSystem.delete(outPath,true); } FileOutputFormat.setOutputPath(job, outPath); //submit boolean isSuccess = job.waitForCompletion(true); return isSuccess ? 0:1; } public static void main(String[] args) { Configuration configuration = new Configuration(); try { int status = ToolRunner.run(configuration, new MRDriver(), args); System.exit(status); } catch (Exception e) { e.printStackTrace(); } } }
Mapper
public class MRModelMapper extends Mapper<LongWritable,Text,Text,LongWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { /** * 实现自己的业务逻辑 */ } }
Reduce
public class MRModelReducer extends Reducer<Text,LongWritable,Text,LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { /** * 根据业务需求自己实现 */ } }
3. 统计每个城市的UV数
分析需求:
UV:unique view 唯一访问数,一个用户记一次
map:
key: CityId (城市id) 数据类型: Text
value: guid (用户id) 数据类型:Text
shuffle:
key: CityId
value: {guid guid guid..}
reduce:
key: CityId
value: 访问数 即shuffle输出value的集合大小
output:
key : CityId
value : 访问数
MRDriver.java mapreduce执行过程
package mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class MRDriver extends Configured implements Tool { public int run(String[] args) throws Exception { //创建job Job job = Job.getInstance(this.getConf(),"mr-demo"); job.setJarByClass(MRDriver.class); //input 默认从hdfs读取数据 将每一行转换成key-value Path inPath = new Path(args[0]); FileInputFormat.setInputPaths(job,inPath); //map 一行调用一次Map方法 对每一行数据进行分割 job.setMapperClass(MRMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); /* //shuffle job.setPartitionerClass(null);//分组 job.setGroupingComparatorClass(null);//分区 job.setSortComparatorClass();//排序 */ //reduce job.setReducerClass(MRReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); //output Path outPath = new Path(args[1]); FileSystem fileSystem = FileSystem.get(this.getConf()); if(fileSystem.exists(outPath)){ //if path is a directory and set to true fileSystem.delete(outPath,true); } FileOutputFormat.setOutputPath(job, outPath); //submit boolean isSuccess = job.waitForCompletion(true); return isSuccess ? 0:1; } public static void main(String[] args) { Configuration configuration = new Configuration(); try { int status = ToolRunner.run(configuration, new MRDriver(), args); System.exit(status); } catch (Exception e) { e.printStackTrace(); } } }
MRMapper.java
package mapreduce; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MRMapper extends Mapper<LongWritable,Text,Text,Text> { private Text mapOutKey = new Text(); private Text mapOutKey1 = new Text(); //一行调用一次Map方法 对每一行数据进行分割 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //获得每行的值 String str = value.toString(); //按空格得到每个item String[] items = str.split(" "); if (items[24]!=null) { this.mapOutKey.set(items[24]); if (items[5]!=null) { this.mapOutKey1.set(items[5]); } } context.write(mapOutKey, mapOutKey1); } }
MPReducer.java
package mapreduce; import java.io.IOException; import java.util.HashSet; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MRReducer extends Reducer<Text, Text, Text, IntWritable>{ //每有一个key value数据 就执行一次reduce方法 @Override protected void reduce(Text key, Iterable<Text> texts, Reducer<Text, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { HashSet<String> set = new HashSet<String>(); for (Text text : texts) { set.add(text.toString()); } context.write(key,new IntWritable(set.size())); } }
4.MapReduce执行wordcount过程理解
input:默认从HDFS读取数据
Path inPath = new Path(args[0]); FileInputFormat.setInputPaths(job,inPath);
将每一行数据转换为key-value(分割),这一步由MapReduce框架自动完成。
输出行的偏移量和行的内容
mapper: 分词输出
数据过滤,数据补全,字段格式化
输入:input的输出
将分割好的<key,value>对交给用户定义的map方法进行处理,生成新的<key,value>对。
一行调用一次map方法。
统计word中的map:
shuffle: 分区,分组,排序
输出:
<Bye,1>
<Hello,1>
<World,1,1>
得到map输出的<key,value>对,Mapper会将他们按照key进行排序,得到mapper的最终输出结果。
Reduce :每一条Keyvalue调用一次reduce方法
将相同Key的List<value>,进行相加求和