在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。在接下来的内容中,我们将实现这两个需求。
1.1 模块创建和数据准备
同样地,在Flink-Project下新建一个 maven module作为子项目,命名为gmall-order。在这个子模块中,我们同样将会用到flink的CEP库来实现事件流的模式匹配,所以需要在pom文件中引入CEP的相关依赖:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-cep_2.12</artifactId>
<version>1.10.0</version>
</dependency>
1.2 代码实现
在电商平台中,最终创造收入和利润的是用户下单购买的环节;更具体一点,是用户真正完成支付动作的时候。用户下单的行为可以表明用户对商品的需求,但在现实中,并不是每次下单都会被用户立刻支付。当拖延一段时间后,用户支付的意愿会降低。所以为了让用户更有紧迫感从而提高支付转化率,同时也为了防范订单支付环节的安全风险,电商网站往往会对订单状态进行监控,设置一个失效时间(比如15分钟),如果下单后一段时间仍未支付,订单就会被取消。
1.2.1 使用CEP实现
我们首先还是利用CEP库来实现这个功能。我们先将事件流按照订单号orderId分流,然后定义这样的一个事件模式:在15分钟内,事件“create”与“pay”非严格紧邻:
Pattern<OrderEvent, OrderEvent> orderEventPattern = Pattern.<OrderEvent>begin("order").where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "create".equals(value.getEventType());
}
}).followedBy("pay").where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "pay".equals(value.getEventType());
}
}).within(Time.minutes(15));
这样调用.select方法时,就可以同时获取到匹配出的事件和超时未匹配的事件了。
完整代码如下:
1)JavaBean--OrderEvent
@Data
@NoArgsConstructor
@AllArgsConstructor
public class OrderEvent {
private Long orderId;
private String eventType;
private String txId;
private Long eventTime;
}
2)JavaBean-- OrderResult
@Data
@NoArgsConstructor
@AllArgsConstructor
public class OrderResult {
private Long orderId;
private String eventType;
}
3)主程序
public class OrderTimeOutWithCepApp {
public static void main(String[] args) {
//1.创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//2.读取文本数据创建流,转换为JavaBean,并提取WaterMark
SingleOutputStreamOperator<OrderEvent> orderEventDS = env.readTextFile("input/OrderLog.csv")
.map(line -> {
String[] fields = line.split(",");
return new OrderEvent(Long.parseLong(fields[0]),
fields[1],
fields[2],
Long.parseLong(fields[3]));
})
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<OrderEvent>() {
@Override
public long extractAscendingTimestamp(OrderEvent element) {
return element.getEventTime() * 1000L;
}
});
//3.定义事件组
Pattern<OrderEvent, OrderEvent> orderEventPattern = Pattern.<OrderEvent>begin("order").where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "create".equals(value.getEventType());
}
}).followedBy("pay").where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "pay".equals(value.getEventType());
}
}).within(Time.minutes(15));
//4.将事件组作用于流上
PatternStream<OrderEvent> eventPatternStream = CEP.pattern(orderEventDS.keyBy("orderId"), orderEventPattern );
//5.选择事件
SingleOutputStreamOperator<OrderResult> result = eventPatternStream.select(new OutputTag<OrderResult>("OutputTag") {
}, new orderTimeOutFunc(), new orderSelectFunc());
result.getSideOutput(new OutputTag<OrderResult>("OutputTag") {}).print("OutputTag");
result.print();
}
public static class orderTimeOutFunc implements PatternTimeoutFunction<OrderEvent,OrderResult> {
@Override
public OrderResult timeout(Map<String, List<OrderEvent>> pattern, long timeoutTimestamp) throws Exception {
List<OrderEvent> orders = pattern.get("order");
return new OrderResult(orders.iterator().next().getOrderId(),"timeout"+timeoutTimestamp) ;
}
}
public static class orderSelectFunc implements PatternSelectFunction<OrderEvent,OrderResult>{
@Override
public OrderResult select(Map<String, List<OrderEvent>> pattern) throws Exception {
List<OrderEvent> pays = pattern.get("pay");
return new OrderResult(pays.iterator().next().getOrderId(),"payed");
}
}
}
1.2.2 使用Process Function实现
我们同样可以利用Process Function,自定义实现检测订单超时的功能。为了简化问题,我们只考虑超时报警的情形,在pay事件超时未发生的情况下,输出超时报警信息。
一个简单的思路是,可以在订单的create事件到来后注册定时器,15分钟后触发;然后再用一个布尔类型的Value状态来作为标识位,表明pay事件是否发生过。如果pay事件已经发生,状态被置为true,那么就不再需要做什么操作;而如果pay事件一直没来,状态一直为false,到定时器触发时,就应该输出超时报警信息。
具体代码实现如下:
public class OrderTimeoutWithoutCep2 {
public static void main(String[] args) throws Exception {
//1.创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//2.读取文件数据创建流,转换为JavaBean,提取事件时间
// SingleOutputStreamOperator<OrderEvent> orderEventDS = env.readTextFile("input/OrderLog.csv")
SingleOutputStreamOperator<OrderEvent> orderEventDS = env.socketTextStream("hadoop102", 7777)
.map(line -> {
String[] fields = line.split(",");
return new OrderEvent(Long.parseLong(fields[0]),
fields[1],
fields[2],
Long.parseLong(fields[3]));
}).assignTimestampsAndWatermarks(new AscendingTimestampExtractor<OrderEvent>() {
@Override
public long extractAscendingTimestamp(OrderEvent element) {
return element.getEventTime() * 1000L;
}
});
//3.按照订单ID分组
SingleOutputStreamOperator<OrderResult> result = orderEventDS.keyBy(data -> data.getOrderId())
.process(new OrderTimeOutProcessFunc());
//4.打印
result.print("payed");
result.getSideOutput(new OutputTag<OrderResult>("payed timeout") {
}).print("payed timeout");
result.getSideOutput(new OutputTag<OrderResult>("pay timeout") {
}).print("pay timeout");
//5.执行
env.execute();
}
public static class OrderTimeOutProcessFunc extends KeyedProcessFunction<Long, OrderEvent, OrderResult> {
//定义状态
private ValueState<Boolean> isCreateState;
private ValueState<Long> tsState;
@Override
public void open(Configuration parameters) throws Exception {
isCreateState = getRuntimeContext().getState(new ValueStateDescriptor<Boolean>("is-created", Boolean.class));
tsState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("ts-state", Long.class));
}
@Override
public void processElement(OrderEvent value, Context ctx, Collector<OrderResult> out) throws Exception {
//判断事件类型
if ("create".equals(value.getEventType())) {
//来的是创建订单事件
isCreateState.update(true);
//注册定时器
long ts = (value.getEventTime() + 900) * 1000L;
ctx.timerService().registerEventTimeTimer(ts);
//更新时间状态
tsState.update(ts);
} else if ("pay".equals(value.getEventType())) {
//来的是支付事件,判断创建状态
if (isCreateState.value() != null) {
//正常支付的订单
out.collect(new OrderResult(value.getOrderId(), "payed"));
//删除定时器
ctx.timerService().deleteEventTimeTimer(tsState.value());
//清空状态
isCreateState.clear();
tsState.clear();
} else {
ctx.output(new OutputTag<OrderResult>("payed timeout") {
},
new OrderResult(value.getOrderId(), "payed timeout"));
}
}
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<OrderResult> out) throws Exception {
//定时器触发,说明订单超时支付了
ctx.output(new OutputTag<OrderResult>("pay timeout") {
},
new OrderResult(ctx.getCurrentKey(), "pay timeout"));
//清空状态
isCreateState.clear();
tsState.clear();
}
}
}
1.3 来自两条流的订单交易匹配
对于订单支付事件,用户支付完成其实并不算完,我们还得确认平台账户上是否到账了。而往往这会来自不同的日志信息,所以我们要同时读入两条流的数据来做合并处理。这里我们利用connect将两条流进行连接,然后用自定义的CoProcessFunction进行处理。
具体代码如下:
1.3.1 使用Connect方式实现
1)JavaBean--ReceiptEvent
@Data
@NoArgsConstructor
@AllArgsConstructor
public class ReceiptEvent {
private String txId;
private String payChannel;
private Long timestamp;
}
2)主程序
public class OrderReceiptAppWithConnect {
public static void main(String[] args) throws Exception {
//1.创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//2.读取文件数据创建流,转换为JavaBean,提取事件时间
SingleOutputStreamOperator<OrderEvent> orderEventDS = env.readTextFile("input/OrderLog.csv")
.map(line -> {
String[] fields = line.split(",");
return new OrderEvent(Long.parseLong(fields[0]),
fields[1],
fields[2],
Long.parseLong(fields[3]));
})
.filter(data -> !"".equals(data.getTxId()))
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<OrderEvent>() {
@Override
public long extractAscendingTimestamp(OrderEvent element) {
return element.getEventTime() * 1000L;
}
});
SingleOutputStreamOperator<ReceiptEvent> receiptEventDS = env.readTextFile("input/ReceiptLog.csv")
.map(line -> {
String[] fields = line.split(",");
return new ReceiptEvent(fields[0], fields[1], Long.parseLong(fields[2]));
})
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<ReceiptEvent>() {
@Override
public long extractAscendingTimestamp(ReceiptEvent element) {
return element.getTimestamp() * 1000L;
}
});
//3.按照流水ID分组之后进行Connect,再做后续处理
SingleOutputStreamOperator<Tuple2<OrderEvent, ReceiptEvent>> result = orderEventDS.keyBy(data -> data.getTxId())
.connect(receiptEventDS.keyBy(data -> data.getTxId()))
.process(new OrderPayReceiptCoProcessFunc());
//4.打印数据
result.print("payAndReceipt");
result.getSideOutput(new OutputTag<String>("payButNoReceipt") {
}).print("payButNoReceipt");
result.getSideOutput(new OutputTag<String>("receiptButNoPay") {
}).print("receiptButNoPay");
//5.任务执行
env.execute();
}
public static class OrderPayReceiptCoProcessFunc extends CoProcessFunction<OrderEvent, ReceiptEvent, Tuple2<OrderEvent, ReceiptEvent>> {
//定义状态
private ValueState<OrderEvent> orderEventValueState;
private ValueState<ReceiptEvent> receiptEventValueState;
private ValueState<Long> tsState;
@Override
public void open(Configuration parameters) throws Exception {
orderEventValueState = getRuntimeContext().getState(new ValueStateDescriptor<OrderEvent>("order-state", OrderEvent.class));
receiptEventValueState = getRuntimeContext().getState(new ValueStateDescriptor<ReceiptEvent>("receipt-state", ReceiptEvent.class));
tsState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("ts-state", Long.class));
}
@Override
public void processElement1(OrderEvent value, Context ctx, Collector<Tuple2<OrderEvent, ReceiptEvent>> out) throws Exception {
//判断receiptEventValueState状态是否为Null
if (receiptEventValueState.value() == null) {
//到账数据没有到达
orderEventValueState.update(value);
//注册5秒后的定时器
long ts = (value.getEventTime() + 5) * 1000L;
ctx.timerService().registerEventTimeTimer(ts);
tsState.update(ts);
} else {
//到账数据已经到达
//输出数据
out.collect(new Tuple2<>(value, receiptEventValueState.value()));
//删除定时器
ctx.timerService().deleteEventTimeTimer(tsState.value());
//清空状态
orderEventValueState.clear();
receiptEventValueState.clear();
tsState.clear();
}
}
@Override
public void processElement2(ReceiptEvent value, Context ctx, Collector<Tuple2<OrderEvent, ReceiptEvent>> out) throws Exception {
//判断receiptEventValueState状态是否为Null
if (