201一 线段树的构造
/** * Definition of SegmentTreeNode: * public class SegmentTreeNode { * public int start, end; * public SegmentTreeNode left, right; * public SegmentTreeNode(int start, int end) { * this.start = start, this.end = end; * this.left = this.right = null; * } * } */ public class Solution { /** *@param start, end: Denote an segment / interval *@return: The root of Segment Tree */ public SegmentTreeNode build(int start, int end) { // write your code here if (start > end){ return null; } SegmentTreeNode root = new SegmentTreeNode(start, end); if (start != end){ int mid = (start + end) / 2; root.left = build(start, mid); root.right = build(mid + 1, end); } return root; } }
public SegmentTreeNode build(int[] A) { // write your code here } public SegmentTreeNode buildTree(int start, int end, int[] A){ if (start > end) return null; if (start == end){ return new SegmentTreeNode(start, end, A[start]); } SegmentTreeNode node = new SegmentTreeNode(start, end, A[start]); int mid = (start + end) / 2; node.left = this.buildTree(start, mid, A); node.left = this.buildTree(mid + 1, end, A); if (node.left != null && node.left.max > node.max){ node.max = node.left.max; } if (node.right != null && node.right.max > node.max){ node.max = node.right.max; } return node; }
二 线段树的操作
202线段树的查询
public int query(SegmentTreeNode root, int start, int end) { // write your code here if (root.start == start && root.end == end){ return root.max; } int mid = (root.start + root.end) / 2; int leftM = Integer.MIN_VALUE, rightM = Integer.MIN_VALUE; if (start <= mid){ if (mid < end){ leftM = query(root.left, start, mid); }else { leftM = query(root.left, start, end); } } if (mid < end){ if (start <= mid){ rightM = query(root.right, mid + 1, end); }else{ rightM = query(root.right, start, end); } } return Math.max(leftM, rightM); }
public int query(SegmentTreeNode root, int start, int end) { // write your code here if (root == null || start > end){ return 0; } if (root.start == start && root.end == end){ return root.count; } int mid = (root.left + root.right) / 2; int leftc = 0, rightc = 0; if (start <= mid){ if (mid < end) { leftc = query(root.left, start, mid); } else { leftc = query(root.right, start, end); } } if (end > mid){ if (start > mid){ rightc = query(root.left, start, end); } else { rightc = query(root.right, mid + 1, end); } } return leftc + rightc; }
203线段树的修改
public void modify(SegmentTreeNode root, int index, int value) { // write your code here if (root.start == index && root.end == index){ root.max = val; } int mid = (root.left + root.right) / 2; if (index >= root.start && index <= mid){ modify(root.left, index, value); } if (index > mid && index < root.right){ modify(root.right, index, value); } root.max = Math.max(root.left.max, root.right.max); }
205 区间最小数
public class Solution { /** *@param A, queries: Given an integer array and an query list *@return: The result list */ public SegmentTreeNode build(int start, int end, int[] A){ if (start > end){ return null; } SegmentTreeNode root = new SegmentTreeNode(start, end, Integer.MAX_VALUE); if (start != end){ int mid = (start + end) / 2; root.left = build(start, mid, A); root.right = build(mid + 1, end, A); root.min = Math.min(root.left.min, root.right.min); } else { root.min = A[start]; } return root; } public int query(SegmentTreeNode root, int start, int end){ if (root.start == start && root.end == end){ return root.min; } int mid = (root.start + root.end) / 2; int leftm = Integr.MAX_VALUE, rightm = Integr.MAX_VALUE; if (start < mid){ if (end < mid){ leftm = query(root.left, start, end); } else { leftm = query(root.left, start, mid); } } if (end > mid){ if (start > mid){ rightm = query(root.right, start, end); } else { rightm = query(root.right, mid + 1, end); } } return Math.min(leftm, rightm); } public ArrayList<Integer> intervalMinNumber(int[] A, ArrayList<Interval> queries) { // write your code here SegmentTreeNode root = build(0, A.length - 1, A); ArrayList<Integer> list = new ArrayList<>(); for (Interval i : queries){ list.add(query(root, i.start, i.end) } } } class SegmentTreeNode{ public int start; public int end; public int min; public SegmentTreeNode left; public SegmentTreeNode right; public SegmentTreeNode(int start, int end, int min){ this.start = start; this.end = end; this.min = min; }
三 线段树的优化
四 线段树的应用