Problem Description
Given n integers.
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
题目大意就是给你一个数列,求区间内的最长连续子序列。以及对某一个点的值进行更改。
线段树维护区间内的LCIS,前缀LCIS,后缀LCIS就可。
代码如下:
#include<iostream> #include<cstdio> #include<cstring> #define lson L,M,po*2 #define rson M+1,R,po*2+1 #define lc po*2 #define rc po*2+1 using namespace std; const int maxn=10e5+10; int mBIT[maxn*4],lBIT[maxn*4],rBIT[maxn*4]; int num[maxn]; void pushUP(int po,int len,int M) { mBIT[po]=max(mBIT[lc],mBIT[rc]); lBIT[po]=lBIT[lc]; rBIT[po]=rBIT[rc]; if(num[M]<num[M+1]) { mBIT[po]=max(mBIT[po],rBIT[lc]+lBIT[rc]); if(lBIT[lc]==len-(len/2)) lBIT[po]+=lBIT[rc]; if(rBIT[rc]==(len/2)) rBIT[po]+=rBIT[lc]; } } void build_tree(int L,int R,int po) { if(L==R) { scanf("%d",&num[L]); mBIT[po]=lBIT[po]=rBIT[po]=1; return; } int M=(L+R)/2; build_tree(lson); build_tree(rson); pushUP(po,R-L+1,M); } void update(int up,int L,int R,int po) { if(L==R&&L==up) return; int M=(L+R)/2; if(up<=M) update(up,lson); else update(up,rson); pushUP(po,R-L+1,M); } int query(int ql,int qr,int L,int R,int po) { if(ql<=L&&qr>=R) return mBIT[po]; int M=(L+R)/2; if(qr<=M) return query(ql,qr,lson); if(ql>M) return query(ql,qr,rson); int ans=max(query(max(ql,L),M,lson),query(M+1,min(qr,R),rson)); int temp=min(rBIT[lc],M-ql+1)+min(lBIT[rc],qr-M); if(num[M]<num[M+1]) //这里要判断! return max(ans,temp); else return ans; } int main() { int N,M; int a,b; char c[5]; int T; cin>>T; while(T--) { scanf("%d %d",&N,&M); build_tree(0,N-1,1); while(M--) { scanf("%s %d %d",c,&a,&b); if(c[0]=='Q') printf("%d ",query(a,b,0,N-1,1)); else { num[a]=b; update(a,0,N-1,1); } } } return 0; }