zoukankan      html  css  js  c++  java
  • (简单) POJ 2253 Frogger,Dijkstra。

      Description

      Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping.
      Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
      To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

      You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

      题目就是求所有通路中,最大边权最小的那一条。。。。。。

      应用Dijkstra的思想,一个个的标记。。。

    代码如下:

    #include<iostream>
    #include<cstring>
    #include<cmath>
    
    #define max(a,b) (a>b ? a:b)
    
    using namespace std;
    
    const int INF=10e8;
    
    int N;
    int X[210],Y[210];
    double ans[210];
    bool vis[210];
    
    void Dijkstra()
    {
        int k;
        double minn,len;
    
        for(int i=1;i<=N;++i)
        {
            vis[i]=0;
            ans[i]=INF;
        }
        ans[1]=0;
    
        for(int i=1;i<=N;++i)
        {
            k=-1;
            minn=INF;
    
            for(int j=1;j<=N;++j)
                if(!vis[j] && ans[j]<minn)
                {
                    minn=ans[j];
                    k=j;
                }
    
            if(k==-1)
                break;
    
            vis[k]=1;
    
            for(int j=1;j<=N;++j)
            {
                len=sqrt((double(X[k])-X[j])*(X[k]-X[j])+(double(Y[k])-Y[j])*(Y[k]-Y[j]));
            
                if(!vis[j] && max(len,ans[k])<ans[j])
                    ans[j]=max(len,ans[k]);
            }
        }
    }
    
    int main()
    {
        ios::sync_with_stdio(false);
        cout.setf(ios::fixed);
        cout.precision(3);
    
        int cas=1;
    
        for(cin>>N;N;cin>>N,++cas)
        {
            for(int i=1;i<=N;++i)
                cin>>X[i]>>Y[i];
    
            Dijkstra();
    
            cout<<"Scenario #"<<cas<<endl;
            cout<<"Frog Distance = "<<ans[2]<<endl<<endl;
        }
    
        return 0;
    }
    View Code
  • 相关阅读:
    OSPF协议 LSAs
    OSPF协议基础
    交换机Access Trunk Hybrid端口
    网络地址转换 NAT
    访问控制列表 ACL
    路由协议 RIP
    动态路由协议
    static 变量
    Unix网络编程 -- ubuntu下搭建编译环境( 解决unp.h 编译等问题)
    linux 错误处理
  • 原文地址:https://www.cnblogs.com/whywhy/p/4338581.html
Copyright © 2011-2022 走看看