zoukankan      html  css  js  c++  java
  • (简单) POJ 3264 Balanced Lineup,RMQ。

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

      题目就是求RMQ,水题。

    代码如下:

    // ━━━━━━神兽出没━━━━━━
    //      ┏┓       ┏┓
    //     ┏┛┻━━━━━━━┛┻┓
    //     ┃           ┃
    //     ┃     ━     ┃
    //     ████━████   ┃
    //     ┃           ┃
    //     ┃    ┻      ┃
    //     ┃           ┃
    //     ┗━┓       ┏━┛
    //       ┃       ┃
    //       ┃       ┃
    //       ┃       ┗━━━┓
    //       ┃           ┣┓
    //       ┃           ┏┛
    //       ┗┓┓┏━━━━━┳┓┏┛
    //        ┃┫┫     ┃┫┫
    //        ┗┻┛     ┗┻┛
    //
    // ━━━━━━感觉萌萌哒━━━━━━
    
    // Author        : WhyWhy
    // Created Time  : 2015年07月17日 星期五 16时52分31秒
    // File Name     : 3264.cpp
    
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <time.h>
    
    using namespace std;
    
    const int MaxN=50004;
    
    int dp1[MaxN][20],dp2[MaxN][20];
    int logN[MaxN];
    
    void init(int N,int num[])
    {
        logN[0]=-1;
    
        for(int i=1;i<=N;++i)
        {
            dp1[i][0]=num[i];
            dp2[i][0]=num[i];
            logN[i]=logN[i-1]+((i&(i-1))==0);
        }
    
        for(int j=1;j<=logN[N];++j)
            for(int i=1;i+(1<<j)-1<=N;++i)
            {
                dp1[i][j]=max(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
                dp2[i][j]=min(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
            }
    }
    
    int RMQ(int x,int y)
    {
        int k=logN[y-x+1];
    
        return max(dp1[x][k],dp1[y-(1<<k)+1][k])-min(dp2[x][k],dp2[y-(1<<k)+1][k]);
    }
    
    int num[MaxN];
    
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
    
        int N,Q;
        int a,b;
    
        while(~scanf("%d %d",&N,&Q))
        {
            for(int i=1;i<=N;++i)
                scanf("%d",&num[i]);
    
            init(N,num);
    
            while(Q--)
            {
                scanf("%d %d",&a,&b);
    
                printf("%d
    ",RMQ(a,b));
            }
        }
        
        return 0;
    }
    View Code
  • 相关阅读:
    【电子书】企业级IT运维宝典之GoldenGate实战下载
    10.Oracle Golden Date(ogg)的搭建和管理(转载)
    VMware Workstation 15 Pro 永久激活密钥
    oracle undo表空间增大不释放
    Oracle11g-BBED安装
    alter system/session set events相关知识
    DG环境的日常巡检
    nginx ----http强制跳转https
    转载:Zabbix-(五)监控Docker容器与自定义jvm监控项
    ORACLE备份保留策略(RETENTION POLICY)
  • 原文地址:https://www.cnblogs.com/whywhy/p/4655138.html
Copyright © 2011-2022 走看看