zoukankan      html  css  js  c++  java
  • Sort

    Sorting Algorithm

    Summary

    There are a lot of sorting algorithms, I have only done on a part of the exercises and tests, and there are a lot of tests that are not tested because of their time complexity (e.g. bogo sort) or implementation complexity (e.g. tim sort). Here are some of the tests I did:

    • Comparison sorts
      • binary_tree_sort
      • bubble_sort
      • comb_sort
      • heap_sort
      • insertion_sort
      • merge_sort
      • odd_even_sort
      • quick_sort
      • selection_sort
      • shell_sort
      • smooth_sort
    • Non-comparison sorts
      • bucket_sort
      • counting_sort
      • radix_sort
    • Other
      • sleep_sort

    Overview

    The following information is in my algorithm implementation.

    Binary tree sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(nlog(n)) O(nlog(n)) O(nlog(n)) O(n) Yes binary_tree_sort.cc

    Dynamic display

    None.

    Bubble sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n) O(n²) O(n²) O(1) Yes bubble_sort.cc

    Dynamic display

    Bucket sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n+k) O(n²) O(n+k) O(n+k) Yes bucket_sort.cc

    Dynamic display

    None.

    Comb sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(nlog(n)) O(n²) O(n²/(2^p)) O(1) No comb_sort.cc

    Dynamic display

    Counting sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    - O(n+r) O(n+r) O(n+r) Yes counting_sort.cc

    Dynamic display

    None.

    Heap sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(nlog(n)) O(nlog(n)) O(nlog(n)) O(1) No heap_sort.cc

    Dynamic display

    Insertion sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n) O(n²) O(n²) O(1) Yes insertion_sort.cc

    Dynamic display

    Merge sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(nlog(n)) O(nlog(n)) O(nlog(n)) O(n) Yes merge_sort.cc

    Dynamic display

    Odd even sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n) O(n²) O(n²) O(1) Yes odd_even_sort.cc

    Dynamic display

    Quick sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(nlog(n)) O(n²) O(nlog(n)) O(log(n)) No quick_sort.cc

    Dynamic display

    Radix sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n) - O(wn) O(w+n) Tes radix_sort.cc

    Dynamic display

    None.

    Selection sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n²) O(n²) O(n²) O(1) No selection_sort.cc

    Dynamic display

    Shell sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n^(7/6)) O(n^(4/3)) - O(1) No shell_sort.cc

    Dynamic display

    Sleep sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(1) - - O(n) No sleep_sort.cc

    Dynamic display

    None.

    Smooth sort

    Best time complexity Worst time complexity Average time complexity Memory Stable Source code
    O(n) O(nlog(n)) O(nlog(n)) O(1) No smooth_sort.cc

    Dynamic display


    Test

    I chose some of the sorting algorithms that are commonly used or work better to show their performances in various orders of magnitude, and compared them to std::sort. (Only for integers)

    • Small amount of data (In microseconds)
    Sorting algorithm 16 32 64 128 512 1024
    Bubble sort 0.718460μs 2.323331μs 8.742816μs 30.240628μs 451.183452μs 1876.617118μs
    Insertion sort 0.354564μs 0.662476μs 1.502234μs 4.077493μs 39.589937μs 134.445298μs
    Selection sort 0.615823μs 1.726170μs 4.404065μs 13.939987μs 150.167438μs 493.693882μs
    Merge sort 4.292098μs 9.013405μs 18.521335μs 39.645921μs 155.457916μs 311.587638μs
    Heap sort 0.802436μs 1.642194μs 4.208122μs 10.273043μs 48.155471μs 102.982355μs
    Quick sort 1.427589μs 2.202033μs 4.758630μs 9.097381μs 40.513671μs 84.237084μs
    Shell sort 0.690468μs 1.091686μs 2.957815μs 6.680743μs 36.912041μs 87.633440μs
    Smooth sort 1.045032μs 2.649904μs 6.475469μs 15.134310μs 77.033824μs 168.044959μs
    Comb sort 0.513186μs 1.110347μs 2.351323μs 5.514413μs 28.999652μs 62.673958μs
    std::sort 0.438540μs 0.821097μs 2.621912μs 5.924961μs 31.798846μs 66.770113μs
    • Large amount of data (In milliseconds)
    Sorting algorithm 10000 100000 1000000
    Bubble sort 192.724614ms 15324.636641ms 551999.618190ms
    Insertion sort 11.071746ms 1199.033438ms 140489.051698ms
    Selection sort 39.881986ms 3896.193842ms 394233.806428ms
    Merge sort 3.423321ms 32.797505ms 336.168389ms
    Heap sort 1.547394ms 17.826575ms 282.484509ms
    Quick sort 1.045033ms 8.998943ms 78.881106ms
    Shell sort 1.200761ms 15.585073ms 180.192715ms
    Smooth sort 2.136252ms 25.397649ms 350.425244ms
    Comb sort 0.988116ms 10.678459ms 126.565752ms
    std::sort 0.845077ms 10.250556ms 104.314305ms

    From the above table, we can see that (In my sorting algorithms implementation):

    • When the amount of data is less than 128, insertion_sort is more advantageous.
    • When the amount of data is between 128 and 10000, comb_sort is more advantageous.
    • When the amount of data is greater than 10000, quick_sort is more advantageous.

    In order to get more accurate data, I have done a further test.

    Sorting algorithm 16 32 64 128 256 512 1024 2048 4096 8192 10000 100000 1000000 10000000 100000000
    Insertion sort 0.401218μs 0.690468μs 1.558218μs 4.198791μs 13.090898μs 45.300293μs 167.597088μs 518.410767μs 2153.046876μs 9295.592109μs - - - - -
    Comb sort 0.606492μs 1.250307μs 2.836517μs 6.494131μs 16.561899μs 36.277557μs 84.600980μs 163.528925μs 330.892747μs 747.338199μs 0.901061ms 12.528727ms 140.981603ms 1540.349918ms 16413.311661ms
    Quick sort 1.166331μs 2.286009μs 4.870598μs 10.459656μs 22.356231μs 47.968858μs 102.991685μs 180.827946μs 386.783325μs 804.982939μs 0.942489ms 10.484755ms 91.543914ms 865.948456ms 8535.924019ms
    std::sort 0.485194μs 0.951726μs 2.799194μs 6.596768μs 14.947697μs 33.711629μs 74.971752μs 138.485468μs 308.657814μs 629.482793μs 0.817458ms 9.687451ms 100.566277ms 961.007785ms 9889.731343ms

    Now I am sure that:

    • When the amount of data is less than 256, insertion_sort has a very good performance, even better than std::sort.
    • When the amount of data is between 256 and 10000, the performance of comb_sort is slightly better than quick_sort.
    • When the amount of data is between 256 and 100000, the performance of std::sort is the best.
    • When the amount of data is greater than 100000, the performance of std::sort is not as good as quick_sort.

    How can I beat std::sort? So I referred to the practice of introsort, but did not control the split depth. I call it Impro sort, and now use it to compare with quick_sort and std::sort.

    Sorting algorithm 16 32 64 128 256 512 1024 2048 4096 8192 10000 100000 1000000 10000000 100000000
    Quick sort 1.166331μs 2.286009μs 4.870598μs 10.459656μs 22.356231μs 47.968858μs 102.991685μs 180.827946μs 386.783325μs 804.982939μs 0.942489ms 10.484755ms 91.543914ms 865.948456ms 8535.924019ms
    Impro sort 0.466531μs 0.886410μs 2.108721μs 6.326164μs 12.363079μs 27.637313μs 59.771987μs 125.935454μs 278.136618μs 479.678131μs 0.617594ms 7.230302ms 84.720028ms 724.386383ms 7360.014444ms
    std::sort 0.485194μs 0.951726μs 2.799194μs 6.596768μs 14.947697μs 33.711629μs 74.971752μs 138.485468μs 308.657814μs 629.482793μs 0.817458ms 9.687451ms 100.566277ms 961.007785ms 9889.731343ms

    From the latest test can be seen, no matter in which respect, Impro sort havs improved than Quick sort, that's why I call it Impro sort, which means "Improved sort". And in my test, Impro sort achieved a comprehensive victory, even faster than std::sort. Oh yeah! Although the results may not be so accurate, this shows that there is space for improvement in sorting algorithm, and we can do better through our efforts.

  • 相关阅读:
    DNS 域名系统服务
    tomcat
    mysql+redis
    centos7搭建lnmp
    redis安装
    redis 高级应用
    ubuntu,安装、配置和美化(1)
    解决大于5.7版本mysql的分组报错Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'userinfo.
    交换机常用命令
    SSH爆破应急响应
  • 原文地址:https://www.cnblogs.com/widerg/p/7222647.html
Copyright © 2011-2022 走看看