zoukankan      html  css  js  c++  java
  • 算法笔记--莫比乌斯反演

    这个B站上的视频讲的不错:http://www.bilibili.com/video/av14325327/

    线性筛求莫比乌斯反演函数代码:

    void Mobius()
    {
        mem(vis,false);
        mu[1]=1;
        cnt=0;
        for(int i=2;i<N;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
                mu[i]=-1;
            }
            for(int j=0;j<cnt&&i*prime[j]<N;j++)
            {
                vis[i*prime[j]]=true;
                if(i%prime[j])mu[i*prime[j]]=-mu[i];
                else
                {
                    mu[i*prime[j]]=0;
                    break;
                }
            }
        }
    }

    例题1:HDU 1695 GCD

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pb push_back
    #define mem(a,b) memset(a,b,sizeof(a))
    
    const int N=1e5+5; 
    int prime[N];
    bool not_prime[N]={false};
    int mu[N];
    void Mobius()
    {
        mu[1]=1;
        int k=0;
        for(int i=2;i<N;i++)
        {
            if(!not_prime[i])
            {
                prime[k++]=i;
                mu[i]=-1;
            }
            for(int j=0;i*prime[j]<N;j++)
            {
                not_prime[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    mu[i*prime[j]]=0;
                    break;
                }
                else mu[i*prime[j]]=-mu[i];
            }
        }
    }
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        int T;
        int a,b,c,d,k;
        Mobius();
        cin>>T;
        for(int Case=1;Case<=T;Case++)
        {
            cin>>a>>b>>c>>d>>k;
            if(k==0){
                cout<<"Case "<<Case<<": 0"<<endl;
                continue;
            }
            ll ans1=0,ans2=0;
            b/=k;
            d/=k;
            for(int i=1;i<=min(b,d);i++)ans1+=(ll)mu[i]*(b/i)*(d/i);
            for(int i=1;i<=min(b,d);i++)ans2+=(ll)mu[i]*(min(b,d)/i)*(min(b,d)/i);
            ans1-=ans2/2;
            cout<<"Case "<<Case<<": "<<ans1<<endl;
        } 
        return 0;
    }
    View Code

    例题2:HDU 6053 TrickGCD

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pb push_back
    #define mem(a,b) memset(a,b,sizeof(a))
    
    const int N=1e5+5;
    const int INF=0x3f3f3f3f; 
    const int MOD=1e9+7;
    int a[N];
    int prime[N];
    bool not_prime[N]={false};
    int mu[N];
    int cnt[2*N];
    void Mobius()
    {
        mu[1]=1;
        int k=0;
        for(int i=2;i<N;i++)
        {
            if(!not_prime[i])
            {
                prime[k++]=i;
                mu[i]=-1;
            }
            for(int j=0;i*prime[j]<N;j++)
            {
                not_prime[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    mu[i*prime[j]]=0;
                    break;
                }
                else mu[i*prime[j]]=-mu[i];
            }
        }
    }
    ll q_pow(ll n,ll k)
    {
        ll ans=1;
        while(k)
        {
            if(k&1)ans=(ans*n)%MOD;
            n=(n*n)%MOD;
            k>>=1;
        }
        return ans;
    }
    int main()
    {
        /*ios::sync_with_stdio(false);
        cin.tie(0);*/
        int T;
        int n;
        Mobius();
        scanf("%d",&T);
        for(int Case=1;Case<=T;Case++)
        {
            int mn=INF;
            int mx=0;
            mem(cnt,0);
            scanf("%d",&n);
            for(int i=1;i<=n;i++)scanf("%d",&a[i]),mn=min(mn,a[i]),mx=max(mx,a[i]);
            for(int i=1;i<=n;i++)cnt[a[i]]++;
            for(int i=1;i<2*N;i++)cnt[i]+=cnt[i-1];
            ll ans=0;
            for(int i=2;i<=mn;i++)
            {
                ll t=1;
                for(int j=1;j*i<=mx;j++)
                {
                    t=(t*q_pow(j,cnt[(j+1)*i-1]-cnt[j*i-1]))%MOD;
                }
                ans=(ans-mu[i]*t%MOD+MOD)%MOD;
            }
            printf("Case #%d: %lld
    ",Case,ans);
        } 
        return 0;
    }
    View Code

    例题3:Codeforces 547C - Mike and Foam

    提示:C(n,2)=n*(n-1)/2=1+2+...+n-1

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pb push_back
    #define mem(a,b) memset(a,b,sizeof(a))
    
    const int N=5e5+5;
    const int INF=0x3f3f3f3f; 
    const int MOD=1e9+7;
    int a[N];
    int prime[N];
    bool not_prime[N]={false};
    bool vis[N]={false};
    int mu[N];
    int cnt[N];
    void Mobius()
    {
        mu[1]=1;
        int k=0;
        for(int i=2;i<N;i++)
        {
            if(!not_prime[i])
            {
                prime[k++]=i;
                mu[i]=-1;
            }
            for(int j=0;i*prime[j]<N;j++)
            {
                not_prime[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    mu[i*prime[j]]=0;
                    break;
                }
                else mu[i*prime[j]]=-mu[i];
            }
        }
    }
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        int n,q,t;
        Mobius();
        cin>>n>>q;
        for(int i=1;i<=n;i++)cin>>a[i];
        ll ans=0;
        while(q--)
        {
            cin>>t;
            if(!vis[t])
            {
                vis[t]=true;
                for(int i=1;i*i<=a[t];i++)
                {
                    if(a[t]%i==0)
                    {
                        ans+=(ll)mu[i]*cnt[i];
                        cnt[i]++;
                        if(i*i!=a[t])ans+=mu[a[t]/i]*cnt[a[t]/i],cnt[a[t]/i]++;
                    }
                }
            }
            else
            {
                vis[t]=false;
                for(int i=1;i*i<=a[t];i++)
                {
                    if(a[t]%i==0)
                    {
                        cnt[i]--;
                        ans-=(ll)mu[i]*cnt[i];
                        if(i*i!=a[t])cnt[a[t]/i]--,ans-=mu[a[t]/i]*cnt[a[t]/i];
                    }
                }
            }
            cout<<ans<<endl;
        }
        return 0;
    }
    View Code

    例题4:大白书P301石头染色方案计数

    代码: 

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<map>
    using namespace std;
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
    //head
    
    const int mod = 1e9 + 7;
    LL q_pow(LL n, LL k) {
        LL ans = 1;
        while(k) {
            if(k&1) ans = (ans * n) % mod;
            n = (n * n) % mod;
            k >>= 1;
        }
        return ans;
    }
    
    map<int, int> get_mu(int n) {
        map<int, int> res;
        vector<int> p;
        for (int i = 2; i * i <= n; i++) {
            if(n % i == 0) {
                p.pb(i);
                while(n % i == 0) n /= i;
            }
        }
        if(n > 1) p.pb(n);
        int m = (int)p.size();
        for (int i = 0; i < (1<<m); i++) {
            int t = 1, mu = 1;
            for (int j = 0; j < m; j++) {
                if(i & (1<<j)) {
                    t *= p[j];
                    mu *= -1;
                }
            }
            res[t] = mu;
        }
        return res;
    }
    int main() {
        int n, m;
        while(~scanf("%d %d", &n, &m)) {
            LL ans = 0;
            for(int i = 1; i*i <= n; i++) {
                if(n % i == 0) {
                    if(i * i == n) {
                        map<int, int> mu = get_mu(i);
                        LL t = 0;
                        for (map<int, int>::iterator it = mu.begin(); it != mu.end(); it++) {
                            t = (t + (it->se) * q_pow(m, i/(it->fi))) % mod;
                        }
                        t = (t * q_pow(i, mod-2)) % mod;
                        ans = (ans + t) % mod;
                    }
                    else {
                        int t1 = i, t2 = n/i;
                        map<int, int> mu = get_mu(t1);
                        LL t = 0;
                        for (map<int, int>::iterator it = mu.begin(); it != mu.end(); it++) {
                            t = (t + (it->se) * q_pow(m, t1/(it->fi))) % mod;
                        }
                        t = (t * q_pow(t1, mod-2)) % mod;
                        ans = (ans + t) % mod;
    
                        mu = get_mu(t2);
                        t = 0;
                        for (map<int, int>::iterator it = mu.begin(); it != mu.end(); it++) {
                            t = (t + (it->se) * q_pow(m, t2/(it->fi))) % mod;
                        }
                        t = (t * q_pow(t2, mod-2)) % mod;
                        ans = (ans + t) % mod;
                    }
                }
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    View Code

    例题5:P4318 完全平方数 

    思路:二分+容斥

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb emplace_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    const int N = 5e4 + 10;
    int prime[N], cnt, mu[N], T, k;
    bool not_p[N];
    void seive() {
        mu[1] = 1;
        for (int i = 2; i < N; ++i) {
            if(!not_p[i]) prime[++cnt] = i, mu[i] = -1;
            for (int j = 1; i*prime[j] < N && j <= cnt; ++j) {
                not_p[i*prime[j]] = true;
                if(i%prime[j] == 0) {
                    mu[i*prime[j]] = 0;
                    break;
                }
                else mu[i*prime[j]] = -mu[i];
            }
        }
    }
    bool ck(LL n) {
        LL tot = 0;
        for (LL i = 1; i*i <= n; ++i) {
            tot += mu[i]*(n/(i*i));
        }
        return tot >= k;
    }
    int main() {
        seive();
        scanf("%d", &T);
        while(T--) {
            scanf("%d", &k);
            LL l = 1, r = 2e9 + 100, m = l+r >> 1;
            while(l < r) {
                if(ck(m)) r = m;
                else l = m+1;
                m = l+r >> 1;
            }
            printf("%lld
    ", m);
        }
        return 0;
    }
    View Code

     

  • 相关阅读:
    AE旋转
    AE2
    AE1
    面试
    TS 基础数据类型
    vue-cli结构介绍
    js异步加载的5种方式
    slot 插槽的使用
    使用组件的细节点
    Vue 条件渲染
  • 原文地址:https://www.cnblogs.com/widsom/p/7701129.html
Copyright © 2011-2022 走看看