zoukankan      html  css  js  c++  java
  • 2.machinelearning的好伙伴pandas

    2.machinelearning的好伙伴pandas

    文件链接和提取码

    链接:https://pan.baidu.com/s/1Nwa9N5ah9Otkyrxv9-hFSQ
    提取码:go0a

    import pandas
    """
    读取得到dataFrame结构
    """
    
    # 读取数据
    citi_info = pandas.read_csv('citi.csv')
    print(type(citi_info))  # 输出文件类型
    print(citi_info.dtypes)  # 输出文件中的元素名称和类型,注意:object为字符型
    print(help(pandas.read_csv))  # read_csv的使用文本
    
    <class 'pandas.core.frame.DataFrame'>
    Date          object
    Open         float64
    High         float64
    Low          float64
    Close        float64
    Volume         int64
    Adj Close    float64
    dtype: object
    Help on function read_csv in module pandas.io.parsers:
    
    
    # 显示某几行几列
    print(citi_info.head(10))  # 将数据显示出来,但只显示前指定条数据
    print(citi_info.tail(10))  # 将数据显示出来,但只显示尾部指定条数据
    
             Date       Open       High        Low      Close   Volume   Adj Close
    0  2000-01-03  55.623610  55.623610  51.998701  52.998676  1681900  276.498726
    1  2000-01-04  51.998701  52.186196  49.748757  49.748757  2403200  259.543615
    2  2000-01-05  50.873729  51.998701  49.498763  51.748707  1742500  269.977529
    3  2000-01-06  51.311218  54.686134  51.248720  54.248645  1863200  283.019922
    4  2000-01-07  53.998651  54.936128  52.811181  53.998651  1394500  281.715683
    5  2000-01-10  54.936128  54.936128  53.561162  53.811156   850300  280.737503
    6  2000-01-11  53.373667  54.373642  52.873679  53.123673   996600  277.150845
    7  2000-01-12  53.561162  54.998626  53.436165  54.998626  1145700  286.932640
    8  2000-01-13  54.998626  56.061099  54.686134  55.623610  1237900  290.193238
    9  2000-01-14  56.498589  58.561037  56.436090  57.998551  2225400  302.583511
                Date       Open       High        Low      Close    Volume  
    4160  2016-07-18  44.279999  44.900002  44.240002  44.570000  18683900   
    4161  2016-07-19  44.189999  44.689999  44.060001  44.349998  15297300   
    4162  2016-07-20  44.529999  44.700001  44.200001  44.470001  16547100   
    4163  2016-07-21  44.500000  44.700001  44.110001  44.130001  14924900   
    4164  2016-07-22  44.099998  44.360001  43.830002  44.299999  12764200   
    4165  2016-07-25  44.310001  44.360001  43.910000  44.040001  14391400   
    4166  2016-07-26  43.930000  44.240002  43.900002  44.150002  16152500   
    4167  2016-07-27  44.200001  44.709999  44.130001  44.290001  17814200   
    4168  2016-07-28  44.000000  44.169998  43.680000  44.080002  13239600   
    4169  2016-07-29  43.869999  44.160000  43.759998  43.810001  13773700   
    
          Adj Close  
    4160  44.408987  
    4161  44.189781  
    4162  44.309350  
    4163  43.970578  
    4164  44.139962  
    4165  43.880903  
    4166  43.990506  
    4167  44.130000  
    4168  44.080002  
    4169  43.810001  
    
    # 显示元素名称以及元素类型
    print(citi_info.columns)
    
    Index(['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'], dtype='object')
    

    # 显示数据的大小 print(citi_info.shape) (4170, 7)

    # 对数据进行切片操作,显示某几列某几行 print(citi_info.loc[0]) print(citi_info.loc[1:3]) print(citi_info["Date"]) columns = ['Date','Open'] print(citi_info[columns]) Date 2000-01-03 Open 55.6236 High 55.6236 Low 51.9987 Close 52.9987 Volume 1681900 Adj Close 276.499 Name: 0, dtype: object Date Open High Low Close Volume Adj Close 1 2000-01-04 51.998701 52.186196 49.748757 49.748757 2403200 259.543615 2 2000-01-05 50.873729 51.998701 49.498763 51.748707 1742500 269.977529 3 2000-01-06 51.311218 54.686134 51.248720 54.248645 1863200 283.019922 0 2000-01-03 1 2000-01-04 2 2000-01-05 3 2000-01-06 4 2000-01-07 ... 4165 2016-07-25 4166 2016-07-26 4167 2016-07-27 4168 2016-07-28 4169 2016-07-29 Name: Date, Length: 4170, dtype: object Date Open 0 2000-01-03 55.623610 1 2000-01-04 51.998701 2 2000-01-05 50.873729 3 2000-01-06 51.311218 4 2000-01-07 53.998651 ... ... ... 4165 2016-07-25 44.310001 4166 2016-07-26 43.930000 4167 2016-07-27 44.200001 4168 2016-07-28 44.000000 4169 2016-07-29 43.869999 [4170 rows x 2 columns]

    # 找出指定的元素的集合 print('找出指定的元素的集合') columns = citi_info.columns.tolist() print(columns) gram_list = [] for c in columns: if c.endswith('e'): gram_list.append(c) print(gram_list) print(citi_info[gram_list]) 找出指定的元素的集合 ['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'] ['Date', 'Close', 'Volume', 'Adj Close'] Date Close Volume Adj Close 0 2000-01-03 52.998676 1681900 276.498726 1 2000-01-04 49.748757 2403200 259.543615 2 2000-01-05 51.748707 1742500 269.977529 3 2000-01-06 54.248645 1863200 283.019922 4 2000-01-07 53.998651 1394500 281.715683 ... ... ... ... ... 4165 2016-07-25 44.040001 14391400 43.880903 4166 2016-07-26 44.150002 16152500 43.990506 4167 2016-07-27 44.290001 17814200 44.130000 4168 2016-07-28 44.080002 13239600 44.080002 4169 2016-07-29 43.810001 13773700 43.810001 [4170 rows x 4 columns]

    # 对每一列进行数学运算 divided = citi_info['Close']*100 print(divided) print(citi_info.shape) subtraction = citi_info['High'] - citi_info['Low'] citi_info['output'] = subtraction print(citi_info.shape) print(citi_info['output']) 0 5299.8676 1 4974.8757 2 5174.8707 3 5424.8645 4 5399.8651 ... 4165 4404.0001 4166 4415.0002 4167 4429.0001 4168 4408.0002 4169 4381.0001 Name: Close, Length: 4170, dtype: float64 (4170, 7) (4170, 8) 0 3.624909 1 2.437439 2 2.499938 3 3.437414 4 2.124947 ... 4165 0.450001 4166 0.340000 4167 0.579998 4168 0.489998 4169 0.400002 Name: output, Length: 4170, dtype: float64

    # 对一列的极值,归一化操作 max_date = citi_info['High'].max() print(max_date) normalize_date = citi_info['High']/max_date citi_info['High_normalize_date'] = normalize_date print(citi_info['High_normalize_date']) 78.310544 0 0.710295 1 0.666401 2 0.664006 3 0.698324 4 0.701516 ... 4165 0.566463 4166 0.564930 4167 0.570932 4168 0.564036 4169 0.563909 Name: High_normalize_date, Length: 4170, dtype: float64

    # 对数据进行排序 citi_info.sort_values('Close',inplace=True) # 升序替换原来列不生成新列 print(citi_info['Close']) citi_info.sort_values('Close',inplace=True,ascending=False) # 降序 print(citi_info['Close']) # 2305 1.020000 2306 1.030000 2307 1.050000 2304 1.130000 2302 1.200000 ... 162 75.373117 164 75.935603 163 76.748083 160 76.873080 161 77.310569 Name: Close, Length: 4170, dtype: float64 161 77.310569 160 76.873080 163 76.748083 164 75.935603 162 75.373117 ... 2302 1.200000 2304 1.130000 2307 1.050000 2306 1.030000 2305 1.020000 Name: Close, Leng

    pandas调用函数扩展

    import numpy as np
    import pandas as pd titanic_survival
    = pd.read_csv('titanic_train.csv') print(titanic_survival.head()) age = titanic_survival["Age"] print(age) age_is_null = pd.isnull(age) # 判断是否缺失,保留年龄为空的数据 print(age_is_null) age_null_true = age[age_is_null] # 答应年龄为空的数据 print(age_null_true) age_null_count = len(age_null_true) print(age_null_count) PassengerId Survived Pclass 0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 4 5 0 3 Name Sex Age SibSp 0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 4 Allen, Mr. William Henry male 35.0 0 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S 4 0 373450 8.0500 NaN S 0 22.0 1 38.0 2 26.0 3 35.0 4 35.0 ... 886 27.0 887 19.0 888 NaN 889 26.0 890 32.0 Name: Age, Length: 891, dtype: float64 0 False 1 False 2 False 3 False 4 False ... 886 False 887 False 888 True 889 False 890 False Name: Age, Length: 891, dtype: bool 5 NaN 17 NaN 19 NaN 26 NaN 28 NaN .. 859 NaN 863 NaN 868 NaN 878 NaN 888 NaN Name: Age, Length: 177, dtype: float64 177
    # 得到平均年龄错误做法 mean_age = sum(titanic_survival['Age']/len(titanic_survival["Age"])) print(mean_age) nan
    # 去掉空值得到平均年龄 # 对于缺失值可以用均值,中值填充 good_age = titanic_survival["Age"][age_is_null==False] correct_mean_age = sum(good_age)/len(good_age) correct_mean_age2 = titanic_survival["Age"].mean() print(correct_mean_age,correct_mean_age2) 29.69911764705882 29.69911764705882
    # 对每个等级的船票价格统计求平均值 passenger_class = [1,2,3] fares_by_class = {} for this_class in passenger_class: Pclass_passengers = titanic_survival[titanic_survival['Pclass'] == this_class] Pclass_fares = Pclass_passengers["Fare"] mean_fare = Pclass_fares.mean() fares_by_class[this_class] = mean_fare print(fares_by_class) {1: 84.1546875, 2: 20.662183152173913, 3: 13.675550101832993}
    # 快速统计量之间的关系 # 计算每个船舱等级的所获救人数的平均值 passenger_survival = titanic_survival.pivot_table(index = 'Pclass',values = 'Survived', aggfunc = np.mean)#对每个Pclass的平均获救人数 print(passenger_survival) # 计算年龄在每个等级的船舱的平均值 passenger_age = titanic_survival.pivot_table(index='Pclass',values="Age",aggfunc=np.mean) # 默认aggfunc=np.mean print(passenger_age) # 计算每个码头收的钱总数和获救人数 port_stats = titanic_survival.pivot_table(index='Embarked', values=['Fare','Survived'],aggfunc=np.sum) print(port_stats) Survived Pclass 1 0.629630 2 0.472826 3 0.242363 Age Pclass 1 38.233441 2 29.877630 3 25.140620 Fare Survived Embarked C 10072.2962 93 Q 1022.2543 30 S 17439.3988 217
    # 对缺失值的处理 drop_na_columns = titanic_survival.dropna(axis=1) # 去除有缺失值的行 new_titanic_survival = titanic_survival.dropna(axis=0,subset=['Age',"Sex"]) # 对指定列进行遍历,去除有缺失值的行 print(new_titanic_survival) PassengerId Survived Pclass 0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 4 5 0 3 .. ... ... ... 885 886 0 3 886 887 0 2 887 888 1 1 889 890 1 1 890 891 0 3 Name Sex Age SibSp 0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 4 Allen, Mr. William Henry male 35.0 0 .. ... ... ... ... 885 Rice, Mrs. William (Margaret Norton) female 39.0 0 886 Montvila, Rev. Juozas male 27.0 0 887 Graham, Miss. Margaret Edith female 19.0 0 889 Behr, Mr. Karl Howell male 26.0 0 890 Dooley, Mr. Patrick male 32.0 0 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S 4 0 373450 8.0500 NaN S .. ... ... ... ... ... 885 5 382652 29.1250 NaN Q 886 0 211536 13.0000 NaN S 887 0 112053 30.0000 B42 S 889 0 111369 30.0000 C148 C 890 0 370376 7.7500 NaN Q [714 rows x 12 columns]
    # 定位到一个具体值 passenger_83_age = titanic_survival.loc[83,'Age'] print('83号乘客的年龄:',passenger_83_age) 83号乘客的年龄: 28.0
    # 对元素重新排列,并重新规划索引值 new_titanic_survival = titanic_survival.sort_values('Age',ascending=False) titanic_reinex = new_titanic_survival.reset_index(drop=True) # 将原来的索引值去除 print(titanic_reinex) PassengerId Survived Pclass Name 0 631 1 1 Barkworth, Mr. Algernon Henry Wilson 1 852 0 3 Svensson, Mr. Johan 2 494 0 1 Artagaveytia, Mr. Ramon 3 97 0 1 Goldschmidt, Mr. George B 4 117 0 3 Connors, Mr. Patrick .. ... ... ... ... 886 860 0 3 Razi, Mr. Raihed 887 864 0 3 Sage, Miss. Dorothy Edith "Dolly" 888 869 0 3 van Melkebeke, Mr. Philemon 889 879 0 3 Laleff, Mr. Kristo 890 889 0 3 Johnston, Miss. Catherine Helen "Carrie" Sex Age SibSp Parch Ticket Fare Cabin Embarked 0 male 80.0 0 0 27042 30.0000 A23 S 1 male 74.0 0 0 347060 7.7750 NaN S 2 male 71.0 0 0 PC 17609 49.5042 NaN C 3 male 71.0 0 0 PC 17754 34.6542 A5 C 4 male 70.5 0 0 370369 7.7500 NaN Q .. ... ... ... ... ... ... ... ... 886 male NaN 0 0 2629 7.2292 NaN C 887 female NaN 8 2 CA. 2343 69.5500 NaN S 888 male NaN 0 0 345777 9.5000 NaN S 889 male NaN 0 0 349217 7.8958 NaN S 890 female NaN 1 2 W./C. 6607 23.4500 NaN S [891 rows x 12 columns]

    # pandas自定义函数 def hundredth_row(column): hundredth_item = column.loc[99] return hundredth_item hundredth_row = titanic_survival.apply(hundredth_row) print(hundredth_row) PassengerId 100 Survived 0 Pclass 2 Name Kantor, Mr. Sinai Sex male Age 34 SibSp 1 Parch 0 Ticket 244367 Fare 26 Cabin NaN Embarked S dtype: object

    pandas之series

    from pandas import Series
    import pandas as pd
    
    """
    每一列为serie结构
    """
    
    fandango = pd.read_csv('fandango_score_comparison.csv')
    series_film = fandango["FILM"]
    print(type(series_film))
    
    <class 'pandas.core.series.Series'>
    
    # 对指定元素进行切片 print(series_film[0:5]) series_rt = fandango["RottenTomatoes"] film_names = series_film.values print(type(film_names)) # pandas封装了numpy所以每个元素的数值集合是ndarray结构 rt_scores = series_rt.values 0 Avengers: Age of Ultron (2015) 1 Cinderella (2015) 2 Ant-Man (2015) 3 Do You Believe? (2015) 4 Hot Tub Time Machine 2 (2015) Name: FILM, dtype: object <class 'numpy.ndarray'>
    # 以film_name为索引统计分数,输出固定值 series_custom = Series(rt_scores,index=film_names) print(series_custom[['Cinderella (2015)','Ant-Man (2015)']]) Cinderella (2015) 85 Ant-Man (2015) 80 dtype: int64
    # 输出第5到10的数据 fiveten = series_custom[5:10] print(fiveten) The Water Diviner (2015) 63 Irrational Man (2015) 42 Top Five (2014) 86 Shaun the Sheep Movie (2015) 99 Love & Mercy (2015) 89 dtype: int64

    # 设置索引值 set_film_index = fandango.set_index("FILM", drop=False)
  • 相关阅读:
    python 冒泡排序
    数组
    git用法
    Leetcode 344. 反转字符串
    Leetcode 83. 删除排序链表中的重复元素
    【第一部分】01Leetcode刷题
    【C++ Primer | 07】常用算法
    【第一部分】10Leetcode刷题
    【第一部分】09Leetcode刷题
    【第一部分】07Leetcode刷题
  • 原文地址:https://www.cnblogs.com/wigginess/p/13069695.html
Copyright © 2011-2022 走看看