zoukankan      html  css  js  c++  java
  • 3.machinelearning的好伙伴plt

    3.machinelearning的好伙伴plt

    文件在下面提取:

    链接:https://pan.baidu.com/s/1W3WzNMp_n4B39pcQhwP3SA
    提取码:7b7r

    折线图

    import pandas as pd
    import matplotlib.pyplot as plt
    
    
    unrate = pd.read_csv('UNRATE.csv')
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    print(unrate.head())
    
    first_twelve = unrate[0:12]
    #第一个参数是x轴的参数,第二个数值为y轴参数
    plt.plot(first_twelve["DATE"],first_twelve['VALUE'])
    plt.xticks(rotation = 0) # 对x轴的数值角度进行旋转
    # 为x轴和y轴加上标签,设置字体大小
    plt.xlabel('Month',fontsize = 15)
    plt.ylabel('Unemployment Rate',fontsize = 15)
    # 对图像设置题目
    plt.title('Monthly Unemployment Rate')
    plt.show()

    直方图

    import matplotlib.pyplot as plt
    import  numpy as np
    
    # 直方图
    
    reviews = pd.read_csv('fandango_scores.csv')
    cols = ["FILM","RT_user_norm","Metacritic_user_nom","IMDB_norm","Fandango_Ratingvalue","Fandango_Stars"]
    nom_reviews = reviews[cols]
    
    # 对每个数值进行个数的统计
    fandango_distribution = nom_reviews['Fandango_Ratingvalue'].value_counts()
    imdb_distribution = nom_reviews['IMDB_norm'].value_counts()
    # 按照索引大小排序
    fandango_distribution = fandango_distribution.sort_index()
    imdb_distribution = imdb_distribution.sort_index()
    
    
    fig, ax = plt.subplots()
    
    # 绘制直方图
    # ax.hist(nom_reviews['Fandango_Ratingvalue'],bins=20)  # 指定bins的个数
    ax.hist(nom_reviews['Fandango_Ratingvalue'],range=(4,5),bins=20)  # 只统计4-5之间的
    ax.set_ylim(0,50) # 设置y轴区间
    ax.set_xlim(4.0,4.2) # 设置x轴区间
    plt.show()

    盒图

    import pandas as pd
    import matplotlib.pyplot as plt
    import  numpy as np
    
    # 直方图
    
    reviews = pd.read_csv('fandango_scores.csv')
    cols = ["FILM","RT_user_norm","Metacritic_user_nom","IMDB_norm","Fandango_Ratingvalue","Fandango_Stars"]
    nom_reviews = reviews[cols]
    
    # 对每个数值进行个数的统计
    fandango_distribution = nom_reviews['Fandango_Ratingvalue'].value_counts()
    imdb_distribution = nom_reviews['IMDB_norm'].value_counts()
    # 按照索引大小排序
    fandango_distribution = fandango_distribution.sort_index()
    imdb_distribution = imdb_distribution.sort_index()
    print(fandango_distribution)
    print(imdb_distribution)
    
    fig, ax = plt.subplots()
    
    
    # 绘制盒图
    ax.boxplot(nom_reviews['RT_user_norm'])
    ax.set_xticklabels('Rotten Tomatoes')
    ax.set_ylim(0,5)
    plt.show()

    柱状图

    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy
    """
    *********当对数据进行切片才能直接用date[]的形式,在定位莫一行只能用loc或者date[0:1]形式
    """
    """
    用ax画图,fig控制实际的参数
    """
    
    reviews = pd.read_csv('fandango_scores.csv')
    cols = ["FILM","RT_user_norm","Metacritic_user_nom","IMDB_norm","Fandango_Ratingvalue","Fandango_Stars"]
    nom_reviews = reviews[cols]
    print(nom_reviews[0:1]) # 打印第一行数据
    num_cols = ["RT_user_norm","Metacritic_user_nom","IMDB_norm","Fandango_Ratingvalue","Fandango_Stars"]
    # 得到柱状图的数值
    bar_values = nom_reviews.loc[0][num_cols]
    print(bar_values)
    # 得到柱状图的x轴坐标位置
    ticks_position = range(1,6) # 定义坐标轴上每个位置
    bar_position = numpy.arange(5) + 1
    
    # 画图
    fig ,ax = plt.subplots()    # 用ax画bar型图
    
    
    # 竖直柱状图
    
    ax.bar(bar_position,bar_values,0.5) # 第三个参数定义柱的宽度
    ax.set_xticks(ticks_position)   # 设置坐标轴有多少位置
    ax.set_xticklabels(num_cols,rotation = 50)  # 设定坐标轴标签
    ax.set_xlabel('Name')
    ax.set_ylabel('Values')
    ax.set_title('first col values')

    子图构建

    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    
    # 引入数据
    unrate = pd.read_csv("UNRATE.csv")
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    
    # 创建子图布局
    
    fig = plt.figure(figsize=(6,6)) # 创建图形,指定子图大小
    ax1 = fig.add_subplot(4,3,1)  # 指定图像在四行三列图像的1号位置
    ax2 = fig.add_subplot(4,3,2)
    ax3 = fig.add_subplot(4,3,6)
    
    ax1.plot(np.random.randint(1,5,5),np.arange(5))
    ax2.plot(np.random.randint(1,5,5),np.arange(5))
    ax3.plot(np.random.randint(1,5,5),np.arange(5))
    plt.show()
    
    
    # 将多条线条画在一个图上
    # 画出多个线并对每个线段进行标识
    unrate["MONTH"] = unrate["DATE"].dt.month # 得到每个月份对应的数据
    unrate["MONTH"] = unrate["DATE"].dt.month
    fig = plt.figure(figsize=(10,6))
    color = ['red','blue','green','yellow','black']
    for i in range(5):
        start = i*12
        end = (i+1)*12
        label = str(1948+i) # 添加标签
        plt.plot(unrate[start:end]["MONTH"],unrate[start:end]["VALUE"],c = color[i],label=label) # 但是不能显示
    plt.legend(loc='best') # lengend解释说明,loc = 'best',表示框的显示位置
    plt.xlabel("MONTH")
    plt.ylabel("RATE")
    
    plt.show()

    图像细节设置

    import pandas as pd
    import matplotlib.pyplot as plt
    
    unrate = pd.read_csv("UNRATE.csv")
    unrate["DATE"] = pd.to_datetime(unrate["DATE"])
    unrate["MONTH"] = unrate['DATE'].dt.month
    
    fig ,ax = plt.subplots()
    ax.plot(unrate[0:12]['MONTH'],unrate[0:12]['VALUE'],c='red',label='first years')
    ax.plot(unrate[12:24]['MONTH'],unrate[12:24]['VALUE'],c='blue',label='secend years')
    # 去除边界
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    # 去除坐标轴尺度
    ax.tick_params(bottom = [],top = [], right = [], left = [])
    
    ax.legend(loc = 'best')
    plt.show()

  • 相关阅读:
    tp5 宝塔open_basedir restriction in effect 错误; IIS open_basedir restriction in effect
    如何封装一个自己的win7系统并安装到电脑做成双系统
    推荐7个模板代码和其他游戏源码下载的网址
    PHP简单实现异步多文件上传并使用Postman测试提交图片
    PHP公众号开发给用户发微信消息提醒功能
    解决在页面中无法获取qrcode.js生成的base64的图片
    如何使用GUID硬盘分区格式安装新windows系统
    超详细的纯净windows系统重装示例
    Spark之join、leftOuterJoin、rightOuterJoin及fullOuterJoin
    Spark中groupByKey、reduceByKey与sortByKey
  • 原文地址:https://www.cnblogs.com/wigginess/p/13069771.html
Copyright © 2011-2022 走看看