zoukankan      html  css  js  c++  java
  • Edit Distance

    Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

    You have the following 3 operations permitted on a word:

    a) Insert a character
    b) Delete a character
    c) Replace a character

    分析:

    处理这道题也是用动态规划。

    动态数组dp[word1.length+1][word2.length+1]

    dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。

    假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。

    以下两种可能性:

    1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]

    2. x != y

    (1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1

    (2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1

    (3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1

    最少的步骤就是取这三个中的最小值。

    最后返回 dp[word1.length+1][word2.length+1] 即可。

    class Solution {
    public:
        int minDistance(string word1, string word2) {
            int m = word1.size();
            int n = word2.size();
            vector<vector<int>> dp(m+1);
            for(size_t i = 0; i<m+1; i++)
                for(size_t j = 0; j<n+1; j++)
                    dp[i].push_back(-1);
            for(size_t i=0; i<m+1;i++)
                dp[i][0] =i;
            for(size_t j=0; j<n+1; j++)
                dp[0][j] =j;
            for(int i=1; i<m+1; i++)
                for(int j =1; j<n+1; j++)
                {
                    if(word1[i-1] == word2[j-1]){
                        dp[i][j] = dp[i-1][j-1];
                    }
                    else{
                        int insert = dp[i-1][j]+1;
                        int replace = dp[i-1][j-1]+1;
                        int del = dp[i][j-1]+1;
                        dp[i][j] = min(del,min(insert, replace));
                    }
                }
            return dp[m][n];
        }
    };
  • 相关阅读:
    IPC机制 用Messenger进行进程间通信
    Android 远程Service
    创建前台 Service
    可见性和可达性,C#和C++
    set,map存储问题
    const形参和非const形参
    数组const形参和非const形参的区别
    switch 变量定义报错
    修改oracle用户密码永不过期
    面向对象语言成员变量方法可见性在继承中的变化
  • 原文地址:https://www.cnblogs.com/willwu/p/6086820.html
Copyright © 2011-2022 走看看