zoukankan      html  css  js  c++  java
  • poj 3259Wormholes

    Description

    While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

    As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

    To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

    Input

    Line 1: A single integer, FF farm descriptions follow. 
    Line 1 of each farm: Three space-separated integers respectively: NM, and W 
    Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires Tseconds to traverse. Two fields might be connected by more than one path. 
    Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

    Output

    Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

    Sample Input

    2
    3 3 1
    1 2 2
    1 3 4
    2 3 1
    3 1 3
    3 2 1
    1 2 3
    2 3 4
    3 1 8

    Sample Output

    NO
    YES

    Hint

    For farm 1, FJ cannot travel back in time. 
    For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
     
    bellman-ford判负环比较经典的一道题,当初也练了一下spfa,数据比较小的时候还是前者占便宜--
    spfa
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <queue>
     4 #include <algorithm>
     5 #define INF 0x7f7f7f7
     6 using namespace std;
     7 int dis[510],vis[510],num[510];
     8 int head[1000];
     9 int n,cnt;
    10 struct edge
    11 {
    12     int v,w,next;
    13 }e[10000];
    14 void addedge(int a,int b,int c)
    15 {
    16     e[cnt].v=b;
    17     e[cnt].w=c;
    18     e[cnt].next=head[a];
    19     head[a]=cnt++;
    20 }
    21 int spfa()
    22 {
    23     int i;
    24     for(i=0;i<=n;i++)
    25     {
    26         dis[i]=INF;
    27         vis[i]=num[i]=0;
    28     }
    29     dis[1]=0;
    30     vis[1]=1;
    31     num[1]++;
    32     deque<int>q;
    33     q.push_back(1);//slf优化
    34     while(!q.empty())
    35     {
    36         int x=q.front();
    37         q.pop_front();
    38         vis[x]=0;
    39         for(i=head[x];i!=-1;i=e[i].next)
    40         {
    41             if(dis[e[i].v]>dis[x]+e[i].w)
    42             {
    43                 dis[e[i].v]=dis[x]+e[i].w;
    44                 if(!vis[e[i].v])
    45                 {
    46                     vis[e[i].v]=1;            
    47                     if(++num[e[i].v]>n)
    48                         return 0;
    49                     if(!q.empty())
    50                     {
    51                         if(dis[e[i].v]>dis[q.front()])
    52                             q.push_back(e[i].v);
    53                         else
    54                             q.push_front(e[i].v);
    55                     }
    56                     q.push_back(e[i].v);
    57                 }
    58             }
    59         }    
    60     }
    61     return 1;
    62 }
    63 
    64 int main()
    65 {
    66     int t,m,w;
    67     int a,b,c;
    68     scanf("%d",&t);
    69     while(t--)
    70     {
    71         cnt=0;
    72         scanf("%d%d%d",&n,&m,&w);
    73         memset(head,-1,sizeof(head));
    74         while(m--)
    75         {
    76             scanf("%d%d%d",&a,&b,&c);
    77             addedge(a,b,c);
    78             addedge(b,a,c);
    79         }
    80         while(w--)
    81         {
    82             scanf("%d%d%d",&a,&b,&c);
    83             addedge(a,b,-c);
    84         }
    85         if(!spfa())
    86             printf("YES\n");
    87         else
    88             printf("NO\n");
    89     }
    90     return 0;
    91 }
    bellman-ford
     1 #include <stdio.h>
     2 struct edge
     3 {
     4     int u, v, t;
     5 } edges[5220];
     6 int el, n, d[501];
     7 void bellman()
     8 {
     9     int i, j, flag;
    10     for (i = 1; i < n; i++)
    11     {
    12         flag = 0;
    13         for (j = 0; j < el; j++)
    14             if (d[edges[j].v] > d[edges[j].u] + edges[j].t)
    15             {
    16                 d[edges[j].v] = d[edges[j].u] + edges[j].t;
    17                 flag = 1;
    18             }
    19             if (!flag)
    20             {
    21                 puts("NO");
    22                 return;
    23             }
    24     }
    25     for (i = 0; i < el; i++)
    26         if (d[edges[i].v] > d[edges[i].u] + edges[i].t)
    27         {
    28             puts("YES");
    29             return;
    30         }
    31         puts("NO");
    32 }
    33 int main(void)
    34 {
    35     int f, m, w, s, e, t;
    36     int i, j;
    37     scanf("%d", &f);
    38     while (f--)
    39     {
    40         el = 0;
    41         scanf("%d %d %d", &n, &m, &w);
    42         for (i = 0; i < m; i++)
    43         {
    44             scanf("%d %d %d", &s, &e, &t);
    45             edges[el].u = s;
    46             edges[el].v = e;
    47             edges[el++].t = t;
    48             edges[el].u = e;
    49             edges[el].v = s;
    50             edges[el++].t = t;
    51         }
    52         for (i = 0; i < w; i++)
    53         {
    54             scanf("%d %d %d", &s, &e, &t);
    55             edges[el].u = s;
    56             edges[el].v = e;
    57             edges[el++].t = -t;
    58         }
    59         bellman();
    60     }
    61     return 0;
    62 }
  • 相关阅读:
    .NET之权限管理
    .NET之带星期的日期显示
    ASP.net MVC 同一view或页面使用多个Model或数据集的方法
    ISBN号校检程序(C#与SQL版)
    ASP操作类似多维Cookies
    C# webBrowser自动登陆windows集成验证方法
    JOI 系列乱做
    NOI2021 部分题解
    「NEERC 2015」Jump 题解
    CF/AT 乱做
  • 原文地址:https://www.cnblogs.com/wilsonjuxta/p/2963730.html
Copyright © 2011-2022 走看看