zoukankan      html  css  js  c++  java
  • ES6-1 ECMAScript 6

    es6新特性

    (1)箭头操作符

    • 简化了函数的书写。操作符左边为输入的参数,而右边则是进行的操作以及返回的值,一般回调以
      匿名函数的形式出现,每次都需要写一个function, 甚是繁琐。当引入箭头操作符后可以方便地写回
      调了。

    (2)类的支持

    • ES6中添加了对类的支持,引入了class关键字(其实class在JavaScrip中一 直是保留字,目的就是
      考虑到可能在以后的新版本中会用到,现在终于派上用场了)。JS本身就是面向对象的,ES6中提
      供的类实际上只是JS原型模式的包装。现在提供原生的class支持后,对象的创建,继承更加直观
      了,并且父类方法的调用,实例化,静态方法和构造函数等概念都更加形象化。

    (3)参数默认值,不定参数,扩展参数

    • 定义函数的时候指定参数的默认值了,而不用像以前那样通过逻辑或操作符来达到目的了
      不定参数是在函数中使用命名参数同时接收不定数量的未命名参数。
      拓展参数则是另一种形式的语法糖,它允许传递数组或者类数组直接做为函数的参数而不用通过
      apply。

    (4)let与const关键字

    • 可以把let看成var,只是它定义的变量被限定在了特定范围内才能使用,而离开这个范围则无效。const则很直观, 用来定义常量,即无法被更改值的变量。

    (5)模块

    • 在ES6标准中,JavaScript原生 支持module了。这种将JS代码分割成不同功能的小
      块进行模块化的概念是在一些 三方规范中流行起来的,比如CommonJS和AMD模
      式。
    • 将不同功能的代码分别写在不同文件中,各模块只需导出公共接口部分,然后通过
      模块的导入的方式可以在其他地方使用。

    (6)新增接口(API)

    • Math, Number, String, Object 的新API

    babel转换器

    • Babel是一个广泛使用的ES6转码器,可以将ES6代码转为ES5代码,从而在现有环境执行。这
      意味着,你可以用ES6的方式编写程序,又不用担心现有环境是否支持。(ttp://babeljs. cn/)
    • Babel也可以用于浏览器环境。但是,从Babel 6.0开始,不再直接提供浏览器版本,而是要用构建
      工具构建出来。如果你没有或不想使用构建工具,可以使用babel-standalone模块提供的浏览器版
      本,将其插入网页。

    注:

    使用babel转换的代码,要写在<script type='text/babel'> </script>中。

    将es6转换成es5会有性能上的影响,因此生产环境中使用的是转换好的代码。

    let和const

    let和var的区别:

    • 作用域不同
    • let不存在变量提升
    • let存在暂时性死区
    • 不允许重复声明

    为什么需要块级作用域?

    ES5 只有全局作用域和函数作用域,没有块级作用域,这带来很多不合理的场景。

    (1)第一种场景,内层变量可能会覆盖外层变量。

    var tmp = new Date();
    
    function f() {
      console.log(tmp);
      if (false) {
        var tmp = 'hello world';
      }
    }
    
    f(); // undefined
    

    上面代码的原意是,if代码块的外部使用外层的tmp变量,内部使用内层的tmp变量。但是,函数f执行后,输出结果为undefined,原因在于变量提升,导致内层的tmp变量覆盖了外层的tmp变量。

    (2)第二种场景,用来计数的循环变量泄露为全局变量。

    var s = 'hello';
    
    for (var i = 0; i < s.length; i++) {
      console.log(s[i]);
    }
    
    console.log(i); // 5
    

    上面代码中,变量i只用来控制循环,但是循环结束后,它并没有消失,泄露成了全局变量。

    ES6 的块级作用域

    let实际上为 JavaScript 新增了块级作用域。

    function f1() {
      let n = 5;
      if (true) {
        let n = 10;
      }
      console.log(n); // 5
    }
    

    上面的函数有两个代码块,都声明了变量n,运行后输出 5。这表示外层代码块不受内层代码块的影响。如果两次都使用var定义变量n,最后输出的值才是 10。

    ES6 允许块级作用域的任意嵌套。

    {{{{
      {let insane = 'Hello World'}
      console.log(insane); // 报错
    }}}};
    

    上面代码使用了一个五层的块级作用域,每一层都是一个单独的作用域。第四层作用域无法读取第五层作用域的内部变量。

    内层作用域可以定义外层作用域的同名变量。

    {{{{
      let insane = 'Hello World';
      {let insane = 'Hello World'}
    }}}};
    

    块级作用域的出现,实际上使得获得广泛应用的匿名立即执行函数表达式(匿名 IIFE)不再必要了。

    // IIFE 写法
    (function () {
      var tmp = ...;
      ...
    }());
    
    // 块级作用域写法
    {
      let tmp = ...;
      ...
    }
    

    let的作用域

    声明变量的作用域不同。var和函数内外有关,let 跟代码块有关,只在大括号里有效。

    ES6 新增了let命令,用来声明变量。它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效。

    {
      let a = 10;
      var b = 1;
    }
    
    a // ReferenceError: a is not defined.
    b // 1
    

    上面代码在代码块之中,分别用letvar声明了两个变量。然后在代码块之外调用这两个变量,结果let声明的变量报错,var声明的变量返回了正确的值。这表明,let声明的变量只在它所在的代码块有效。

    for循环的计数器,就很合适使用let命令。(重要)

    for (let i = 0; i < 10; i++) {
      // ...
    }
    
    console.log(i);
    // ReferenceError: i is not defined
    

    上面代码中,计数器i只在for循环体内有效,在循环体外引用就会报错。

    下面的代码如果使用var,最后输出的是10

    var a = [];
    for (var i = 0; i < 10; i++) {
      a[i] = function () {
        console.log(i);
      };
    }
    a[6](); // 10
    

    上面代码中,变量ivar命令声明的,在全局范围内都有效,所以全局只有一个变量i。每一次循环,变量i的值都会发生改变,而循环内被赋给数组a的函数内部的console.log(i),里面的i指向的就是全局的i。也就是说,所有数组a的成员里面的i,指向的都是同一个i,导致运行时输出的是最后一轮的i的值,也就是 10。

    如果使用let,声明的变量仅在块级作用域内有效,最后输出的是 6。

    var a = [];
    for (let i = 0; i < 10; i++) {
      a[i] = function () {
        console.log(i);
      };
    }
    a[6](); // 6
    

    上面代码中,变量ilet声明的,当前的i只在本轮循环有效所以每一次循环的i其实都是一个新的变量,所以最后输出的是6。你可能会问,如果每一轮循环的变量i都是重新声明的,那它怎么知道上一轮循环的值,从而计算出本轮循环的值?这是因为 JavaScript 引擎内部会记住上一轮循环的值,初始化本轮的变量i时,就在上一轮循环的基础上进行计算。

    另外,for循环还有一个特别之处,就是设置循环变量的那部分是一个父作用域,而循环体内部是一个单独的子作用域。

    for (let i = 0; i < 3; i++) {
      let i = 'abc';
      console.log(i);
    }
    // abc
    // abc
    // abc
    

    上面代码正确运行,输出了 3 次abc。这表明函数内部的变量i与循环变量i不在同一个作用域,有各自单独的作用域。

    不存在变量提升

    var命令会发生“变量提升”现象,即变量可以在声明之前使用,值为undefined。这种现象多多少少是有些奇怪的,按照一般的逻辑,变量应该在声明语句之后才可以使用。

    为了纠正这种现象,let命令改变了语法行为,它所声明的变量一定要在声明后使用,否则报错。

    下面是var变量提升的过程:

    alert(x);
    var x=10;
    
    实际变成:
    var x;
    alert(x);
    x=10;
    
    //把声明的过程提升到使用之前。
    

    暂时性死区

    只要块级作用域内存在let命令,它所声明的变量就“绑定”(binding)这个区域,不再受外部的影响。

    var tmp = 123;
    
    if (true) {
      tmp = 'abc'; // ReferenceError
      let tmp;
    }
    

    上面代码中,存在全局变量tmp,但是块级作用域内let又声明了一个局部变量tmp,导致后者绑定这个块级作用域,所以在let声明变量前,对tmp赋值会报错。

    ES6 明确规定,如果区块中存在letconst命令,这个区块对这些命令声明的变量,从一开始就形成了封闭作用域。凡是在声明之前就使用这些变量,就会报错。

    总之,在代码块内,使用let命令声明变量之前,该变量都是不可用的。这在语法上,称为“暂时性死区”(temporal dead zone,简称 TDZ)。

    if (true) {
      // TDZ开始
      tmp = 'abc'; // ReferenceError
      console.log(tmp); // ReferenceError
    
      let tmp; // TDZ结束
      console.log(tmp); // undefined
    
      tmp = 123;
      console.log(tmp); // 123
    }
    

    上面代码中,在let命令声明变量tmp之前,都属于变量tmp的“死区”

    不允许重复声明

    let不允许在相同作用域内,重复声明同一个变量。

    // 报错
    function func() {
      let a = 10;
      var a = 1;
    }
    
    // 报错
    function func() {
      let a = 10;
      let a = 1;
    }
    

    因此,不能在函数内部重新声明参数。

    function func(arg) {
      let arg;
    }
    func() // 报错
    
    function func(arg) {
      {
        let arg;
      }
    }
    func() // 不报错
    

    const

    几个特点:

    • const声明一个只读的常量。一旦声明,常量的值就不能改变。
    • const声明的变量不得改变值,这意味着,const一旦声明变量,就必须立即初始化,不能留到以后赋值。
    • const的作用域与let命令相同:只在声明所在的块级作用域内有效
    • const命令声明的常量也是不提升,同样存在暂时性死区,只能在声明的位置后面使用。
    • const声明的常量,也与let一样不可重复声明。
    const x=[23,5,2,55,23];
    x[0]='zhou';//不报错
    
    常量指针,指针指向的地址不能变,但指针所指向区域的内容可以变
    

    解构赋值

    mark

    数组的解构赋值

    ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring)。

    解构赋值分为下面情况:

    (1)解构成功

    (2)解构不成功

    (3)不完全解构

    解构成功

    以前,为变量赋值,只能直接指定值。

    let a = 1;
    let b = 2;
    let c = 3;
    

    ES6 允许写成下面这样。

    let [a, b, c] = [1, 2, 3];
    

    上面代码表示,可以从数组中提取值,按照对应位置,对变量赋值。

    本质上,这种写法属于“模式匹配”,只要等号两边的模式相同,左边的变量就会被赋予对应的值。下面是一些使用嵌套数组进行解构的例子。

    let [foo, [[bar], baz]] = [1, [[2], 3]];
    foo // 1
    bar // 2
    baz // 3
    
    let [ , , third] = ["foo", "bar", "baz"];
    third // "baz"
    
    let [x, , y] = [1, 2, 3];
    x // 1
    y // 3
    
    let [head, ...tail] = [1, 2, 3, 4];
    head // 1
    tail // [2, 3, 4]
    
    let [x, y, ...z] = ['a'];
    x // "a"
    y // undefined
    z // []
    

    解构不成功

    如果解构不成功,变量的值就等于undefined

    let [foo] = [];
    let [bar, foo] = [1];
    

    以上两种情况都属于解构不成功,foo的值都会等于undefined

    不完全解构

    另一种情况是不完全解构,即等号左边的模式,只匹配一部分的等号右边的数组。这种情况下,解构依然可以成功。

    let [x, y] = [1, 2, 3];
    x // 1
    y // 2
    
    let [a, [b], d] = [1, [2, 3], 4];
    a // 1
    b // 2
    d // 4
    

    上面两个例子,都属于不完全解构,但是可以成功。

    如果等号的右边不是数组(或者严格地说,不是可遍历的结构,参见《Iterator》一章),那么将会报错。

    // 报错
    let [foo] = 1;
    let [foo] = false;
    let [foo] = NaN;
    let [foo] = undefined;
    let [foo] = null;
    let [foo] = {};
    

    上面的语句都会报错,因为等号右边的值,要么转为对象以后不具备 Iterator 接口(前五个表达式),要么本身就不具备 Iterator 接口(最后一个表达式)。

    对于 Set 结构,也可以使用数组的解构赋值。

    let [x, y, z] = new Set(['a', 'b', 'c']);
    x // "a"
    

    事实上,只要某种数据结构具有 Iterator 接口,都可以采用数组形式的解构赋值。

    function* fibs() {
      let a = 0;
      let b = 1;
      while (true) {
        yield a;
        [a, b] = [b, a + b];
      }
    }
    
    let [first, second, third, fourth, fifth, sixth] = fibs();
    sixth // 5
    

    上面代码中,fibs是一个 Generator 函数(参见《Generator 函数》一章),原生具有 Iterator 接口。解构赋值会依次从这个接口获取值。

    对象的解构赋值

    简介

    解构不仅可以用于数组,还可以用于对象。

    let { foo, bar } = { foo: 'aaa', bar: 'bbb' };
    foo // "aaa"
    bar // "bbb"
    

    对象的解构与数组有一个重要的不同。数组的元素是按次序排列的,变量的取值由它的位置决定;而对象的属性没有次序,变量必须与属性同名,才能取到正确的值。

    let { bar, foo } = { foo: 'aaa', bar: 'bbb' };
    foo // "aaa"
    bar // "bbb"
    
    let { baz } = { foo: 'aaa', bar: 'bbb' };
    baz // undefined
    

    上面代码的第一个例子,等号左边的两个变量的次序,与等号右边两个同名属性的次序不一致,但是对取值完全没有影响。第二个例子的变量没有对应的同名属性,导致取不到值,最后等于undefined

    如果解构失败,变量的值等于undefined

    let {foo} = {bar: 'baz'};
    foo // undefined
    

    上面代码中,等号右边的对象没有foo属性,所以变量foo取不到值,所以等于undefined

    对象的解构赋值,可以很方便地将现有对象的方法,赋值到某个变量。

    // 例一
    let { log, sin, cos } = Math;
    
    // 例二
    const { log } = console;
    log('hello') // hello
    

    上面代码的例一将Math对象的对数、正弦、余弦三个方法,赋值到对应的变量上,使用起来就会方便很多。例二将console.log赋值到log变量。

    如果变量名与属性名不一致,必须写成下面这样。

    let { foo: baz } = { foo: 'aaa', bar: 'bbb' };
    baz // "aaa"
    
    let obj = { first: 'hello', last: 'world' };
    let { first: f, last: l } = obj;
    f // 'hello'
    l // 'world'
    

    这实际上说明,对象的解构赋值是下面形式的简写(参见《对象的扩展》一章)。

    let { foo: foo, bar: bar } = { foo: 'aaa', bar: 'bbb' };
    

    也就是说,对象的解构赋值的内部机制,是先找到同名属性,然后再赋给对应的变量。真正被赋值的是后者,而不是前者。

    let { foo: baz } = { foo: 'aaa', bar: 'bbb' };
    baz // "aaa"
    foo // error: foo is not defined
    

    上面代码中,foo是匹配的模式,baz才是变量。真正被赋值的是变量baz,而不是模式foo

    与数组一样,解构也可以用于嵌套结构的对象。

    let obj = {
      p: [
        'Hello',
        { y: 'World' }
      ]
    };
    
    let { p: [x, { y }] } = obj;
    x // "Hello"
    y // "World"
    

    注意,这时p是模式,不是变量,因此不会被赋值。如果p也要作为变量赋值,可以写成下面这样。

    let obj = {
      p: [
        'Hello',
        { y: 'World' }
      ]
    };
    
    let { p, p: [x, { y }] } = obj;
    x // "Hello"
    y // "World"
    p // ["Hello", {y: "World"}]
    

    下面是另一个例子。

    const node = {
      loc: {
        start: {
          line: 1,
          column: 5
        }
      }
    };
    
    let { loc, loc: { start }, loc: { start: { line }} } = node;
    line // 1
    loc  // Object {start: Object}
    start // Object {line: 1, column: 5}
    

    上面代码有三次解构赋值,分别是对locstartline三个属性的解构赋值。注意,最后一次对line属性的解构赋值之中,只有line是变量,locstart都是模式,不是变量。

    下面是嵌套赋值的例子。

    let obj = {};
    let arr = [];
    
    ({ foo: obj.prop, bar: arr[0] } = { foo: 123, bar: true });
    
    obj // {prop:123}
    arr // [true]
    

    如果解构模式是嵌套的对象,而且子对象所在的父属性不存在,那么将会报错。

    // 报错
    let {foo: {bar}} = {baz: 'baz'};
    

    上面代码中,等号左边对象的foo属性,对应一个子对象。该子对象的bar属性,解构时会报错。原因很简单,因为foo这时等于undefined,再取子属性就会报错。

    注意,对象的解构赋值可以取到继承的属性。

    const obj1 = {};
    const obj2 = { foo: 'bar' };
    Object.setPrototypeOf(obj1, obj2);
    
    const { foo } = obj1;
    foo // "bar"
    

    上面代码中,对象obj1的原型对象是obj2foo属性不是obj1自身的属性,而是继承自obj2的属性,解构赋值可以取到这个属性。

    默认值

    对象的解构也可以指定默认值。

    var {x = 3} = {};
    x // 3
    
    var {x, y = 5} = {x: 1};
    x // 1
    y // 5
    
    var {x: y = 3} = {};
    y // 3
    
    var {x: y = 3} = {x: 5};
    y // 5
    
    var { message: msg = 'Something went wrong' } = {};
    msg // "Something went wrong"
    

    默认值生效的条件是,对象的属性值严格等于undefined

    var {x = 3} = {x: undefined};
    x // 3
    
    var {x = 3} = {x: null};
    x // null
    

    上面代码中,属性x等于null,因为nullundefined不严格相等,所以是个有效的赋值,导致默认值3不会生效。

    注意点

    (1)如果要将一个已经声明的变量用于解构赋值,必须非常小心。

    // 错误的写法
    let x;
    {x} = {x: 1};
    // SyntaxError: syntax error
    

    上面代码的写法会报错,因为 JavaScript 引擎会将{x}理解成一个代码块,从而发生语法错误。只有不将大括号写在行首,避免 JavaScript 将其解释为代码块,才能解决这个问题。

    // 正确的写法
    let x;
    ({x} = {x: 1});
    

    上面代码将整个解构赋值语句,放在一个圆括号里面,就可以正确执行。关于圆括号与解构赋值的关系,参见下文。

    (2)解构赋值允许等号左边的模式之中,不放置任何变量名。因此,可以写出非常古怪的赋值表达式。

    ({} = [true, false]);
    ({} = 'abc');
    ({} = []);
    

    上面的表达式虽然毫无意义,但是语法是合法的,可以执行。

    (3)由于数组本质是特殊的对象,因此可以对数组进行对象属性的解构。

    let arr = [1, 2, 3];
    let {0 : first, [arr.length - 1] : last} = arr;
    first // 1
    last // 3
    

    上面代码对数组进行对象解构。数组arr0键对应的值是1[arr.length - 1]就是2键,对应的值是3。方括号这种写法,属于“属性名表达式”(参见《对象的扩展》一章)。

    生活是一首长长的歌!
  • 相关阅读:
    python ConfigParser、shutil、subprocess、ElementTree模块简解
    python中getattr函数 hasattr函数
    对简历的一点看法
    信息过载下的时间管理
    沉默的QQ
    想把余生变诗篇
    你的薪水偏高了吗?
    写给三十五岁的自己
    传统企业对互联网的痴心妄想
    小二,换大碗!
  • 原文地址:https://www.cnblogs.com/wind-zhou/p/14806449.html
Copyright © 2011-2022 走看看