zoukankan      html  css  js  c++  java
  • pandas再次学习

    numpy、scipy官方文档  pandas官方网站  matplotlib官方文档

    一、数据结构

    二、数据处理

    1、数据获取(excel文件数据基本信息)

    #coding=utf-8
    import pandas as pd
    import numpy as np
    
    excel_data = pd.read_excel("test.xlsx")
    print excel_data.shape            #显示数据多少行多少列
    print excel_data.index            #显示数据所有行的索引数
    print excel_data.columns          #显示数据所有列的列名
    print excel_data.info             #显示所有列的列名
    print excel_data.dtypes           #显示数据的类型

    输出:

    '''
       name  age       time adress  home
    0   cat  2.0 1900-01-01      a   NaN
    1   dog  3.0 1900-01-02      b   NaN
    2   pig  4.0 1900-01-03      c   NaN
    3  bird  5.0        NaT      d   NaN
    4   NaN  6.0 1900-01-02      e   NaN
    5   pig  7.0 1900-01-03    NaN   NaN
    6  bird  NaN        NaT    NaN   NaN
    '''
    excel_data
    '''
    (7, 5)
    '''
    excel_data.shape
    '''
    RangeIndex(start=0, stop=7, step=1)
    '''
    excel_data.index
    '''
    Index([u'name', u'age', u'time', u'adress', u'home'], dtype='object')
    '''
    excel_data.columns
    '''
    <bound method DataFrame.info of    name  age       time adress  home
    0   cat  2.0 1900-01-01      a   NaN
    1   dog  3.0 1900-01-02      b   NaN
    2   pig  4.0 1900-01-03      c   NaN
    3  bird  5.0        NaT      d   NaN
    4   NaN  6.0 1900-01-02      e   NaN
    5   pig  7.0 1900-01-03    NaN   NaN
    6  bird  NaN        NaT    NaN   NaN>
    '''
    excel_data.info
    '''
    name              object
    age              float64
    time      datetime64[ns]
    adress            object
    home             float64
    dtype: object
    '''
    excel_data.dtypes
    #Help on function read_excel in module pandas.io.excel:
    
    read_excel(*args, **kwargs)
        Read an Excel table into a pandas DataFrame
        
        Parameters
        ----------
        io : string, path object (pathlib.Path or py._path.local.LocalPath),
            file-like object, pandas ExcelFile, or xlrd workbook.
            The string could be a URL. Valid URL schemes include http, ftp, s3,
            and file. For file URLs, a host is expected. For instance, a local
            file could be file://localhost/path/to/workbook.xlsx
        sheet_name : string, int, mixed list of strings/ints, or None, default 0
        
            Strings are used for sheet names, Integers are used in zero-indexed
            sheet positions.
        
            Lists of strings/integers are used to request multiple sheets.
        
            Specify None to get all sheets.
        
            str|int -> DataFrame is returned.
            list|None -> Dict of DataFrames is returned, with keys representing
            sheets.
        
            Available Cases
        
            * Defaults to 0 -> 1st sheet as a DataFrame
            * 1 -> 2nd sheet as a DataFrame
            * "Sheet1" -> 1st sheet as a DataFrame
            * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
            * None -> All sheets as a dictionary of DataFrames
        
        sheetname : string, int, mixed list of strings/ints, or None, default 0
        
            .. deprecated:: 0.21.0
               Use `sheet_name` instead
        
        header : int, list of ints, default 0
            Row (0-indexed) to use for the column labels of the parsed
            DataFrame. If a list of integers is passed those row positions will
            be combined into a ``MultiIndex``. Use None if there is no header.
        names : array-like, default None
            List of column names to use. If file contains no header row,
            then you should explicitly pass header=None
        index_col : int, list of ints, default None
            Column (0-indexed) to use as the row labels of the DataFrame.
            Pass None if there is no such column.  If a list is passed,
            those columns will be combined into a ``MultiIndex``.  If a
            subset of data is selected with ``usecols``, index_col
            is based on the subset.
        parse_cols : int or list, default None
        
            .. deprecated:: 0.21.0
               Pass in `usecols` instead.
        
        usecols : int or list, default None
            * If None then parse all columns,
            * If int then indicates last column to be parsed
            * If list of ints then indicates list of column numbers to be parsed
            * If string then indicates comma separated list of Excel column letters and
              column ranges (e.g. "A:E" or "A,C,E:F").  Ranges are inclusive of
              both sides.
        squeeze : boolean, default False
            If the parsed data only contains one column then return a Series
        dtype : Type name or dict of column -> type, default None
            Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
            Use `object` to preserve data as stored in Excel and not interpret dtype.
            If converters are specified, they will be applied INSTEAD
            of dtype conversion.
        
            .. versionadded:: 0.20.0
        
        engine: string, default None
            If io is not a buffer or path, this must be set to identify io.
            Acceptable values are None or xlrd
        converters : dict, default None
            Dict of functions for converting values in certain columns. Keys can
            either be integers or column labels, values are functions that take one
            input argument, the Excel cell content, and return the transformed
            content.
        true_values : list, default None
            Values to consider as True
        
            .. versionadded:: 0.19.0
        
        false_values : list, default None
            Values to consider as False
        
            .. versionadded:: 0.19.0
        
        skiprows : list-like
            Rows to skip at the beginning (0-indexed)
        nrows : int, default None
            Number of rows to parse
        
            .. versionadded:: 0.23.0
        
        na_values : scalar, str, list-like, or dict, default None
            Additional strings to recognize as NA/NaN. If dict passed, specific
            per-column NA values. By default the following values are interpreted
            as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
            '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan',
            'null'.
        keep_default_na : bool, default True
            If na_values are specified and keep_default_na is False the default NaN
            values are overridden, otherwise they're appended to.
        verbose : boolean, default False
            Indicate number of NA values placed in non-numeric columns
        thousands : str, default None
            Thousands separator for parsing string columns to numeric.  Note that
            this parameter is only necessary for columns stored as TEXT in Excel,
            any numeric columns will automatically be parsed, regardless of display
            format.
        comment : str, default None
            Comments out remainder of line. Pass a character or characters to this
            argument to indicate comments in the input file. Any data between the
            comment string and the end of the current line is ignored.
        skip_footer : int, default 0
        
            .. deprecated:: 0.23.0
               Pass in `skipfooter` instead.
        skipfooter : int, default 0
            Rows at the end to skip (0-indexed)
        convert_float : boolean, default True
            convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
            data will be read in as floats: Excel stores all numbers as floats
            internally
        
        Returns
        -------
        parsed : DataFrame or Dict of DataFrames
            DataFrame from the passed in Excel file.  See notes in sheet_name
            argument for more information on when a Dict of Dataframes is returned.
    read_excel参数解析
    获取行
    excel_data.head(5)                   #显示数据的前5行
    excel_data.tail(5)                      #显示数据的后5行
    excel_data.loc[0]                       #获取第一行的数据
    excel_data.loc[2:4]                    #返回第3行到第4行的数据
    excel_data.loc[[2,5,10]]             #返回行标号为2,5,10三行数据,注意必须是由列表包含起来的数据。
    excel_data.iloc[0]                       #获取第一行
    
    获取列 
    excel_data["name"]                      #返回这一列("name")的数据
    excel_data[["name","age"]]          #返回列名为name和 age的两列数据
    excel_data["name"].unique()         #显示数据name列的所有唯一值, 有0值是因为对数据缺失值进行了填充
    
    获取某行某列
    excel_data.head(5)["name"]                 #获取前5行的name列
    excel_data.head(5)["name"][0]             #获取前5行的name列的元素值
    excel_data.at[1,"age"]                          #表示取第二行"age"列的数据
    excel_data.loc[0]["name"]                     #获取第一行且列名为name的数据
    excel_data.loc[:,"age"]                          #获取age的那一列,这个冒号的意思是所有行,逗号表示行与列的区分
    excel_data.loc[:,["age","time"]]             #获取所有行的age列和time列的数据
    excel_data.loc[1,["age","time"]]             #获取第二行的age和time列的数据
    excel_data.iloc[0:2,0:2]                          #获取前两行前两列的数据
    excel_data.iloc[[1,2,4],[0,2]]                   #获取第1,2,4行中的0,2列的数据
    
    
    获取空值
    excel_data.notnull()                    #excel_data的非空值为True
    excel_data.isnull()                      #isnull是Python中检验空值的函数,返回的结果是逻辑值,包含空值返回True,不包含则返回False。可以对整个数据表进行检查,也可以单独对某一列进行空值检查。
    行列数据获取

    2、数据清洗转换

    1)增

    2)删

    a、删除无效行、列(整行、列都是空白,且说明无效的行、列)

    b、删除指定行、列

    Help on method drop in module pandas.core.frame:
    
    drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') method of pandas.core.frame.DataFrame instance
        Drop specified labels from rows or columns.
        
        Remove rows or columns by specifying label names and corresponding
        axis, or by specifying directly index or column names. When using a
        multi-index, labels on different levels can be removed by specifying
        the level.
        
        Parameters
        ----------
        labels : single label or list-like
            Index or column labels to drop.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Whether to drop labels from the index (0 or 'index') or
            columns (1 or 'columns').
        index, columns : single label or list-like
            Alternative to specifying axis (``labels, axis=1``
            is equivalent to ``columns=labels``).
        
            .. versionadded:: 0.21.0
        level : int or level name, optional
            For MultiIndex, level from which the labels will be removed.
        inplace : bool, default False
            If True, do operation inplace and return None.
        errors : {'ignore', 'raise'}, default 'raise'
            If 'ignore', suppress error and only existing labels are
            dropped.
    excel_data.drop
    #Help on method dropna in module pandas.core.frame:
    
    dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False) method of pandas.core.frame.DataFrame instance
        Remove missing values.
        
        See the :ref:`User Guide <missing_data>` for more on which values are
        considered missing, and how to work with missing data.
        
        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Determine if rows or columns which contain missing values are
            removed.
        
            * 0, or 'index' : Drop rows which contain missing values.
            * 1, or 'columns' : Drop columns which contain missing value.
        
            .. deprecated:: 0.23.0: Pass tuple or list to drop on multiple
            axes.
        how : {'any', 'all'}, default 'any'
            Determine if row or column is removed from DataFrame, when we have
            at least one NA or all NA.
        
            * 'any' : If any NA values are present, drop that row or column.
            * 'all' : If all values are NA, drop that row or column.
        thresh : int, optional
            Require that many non-NA values.
        subset : array-like, optional
            Labels along other axis to consider, e.g. if you are dropping rows
            these would be a list of columns to include.
        inplace : bool, default False
            If True, do operation inplace and return None.
    excel_data.dropna

    3)改

    #Help on method fillna in module pandas.core.frame:
    
    fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) method of pandas.core.frame.DataFrame instance
        Fill NA/NaN values using the specified method
        
        Parameters
        ----------
        value : scalar, dict, Series, or DataFrame
            Value to use to fill holes (e.g. 0), alternately a
            dict/Series/DataFrame of values specifying which value to use for
            each index (for a Series) or column (for a DataFrame). (values not
            in the dict/Series/DataFrame will not be filled). This value cannot
            be a list.
        method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
            Method to use for filling holes in reindexed Series
            pad / ffill: propagate last valid observation forward to next valid
            backfill / bfill: use NEXT valid observation to fill gap
        axis : {0 or 'index', 1 or 'columns'}
        inplace : boolean, default False
            If True, fill in place. Note: this will modify any
            other views on this object, (e.g. a no-copy slice for a column in a
            DataFrame).
        limit : int, default None
            If method is specified, this is the maximum number of consecutive
            NaN values to forward/backward fill. In other words, if there is
            a gap with more than this number of consecutive NaNs, it will only
            be partially filled. If method is not specified, this is the
            maximum number of entries along the entire axis where NaNs will be
            filled. Must be greater than 0 if not None.
        downcast : dict, default is None
            a dict of item->dtype of what to downcast if possible,
            or the string 'infer' which will try to downcast to an appropriate
            equal type (e.g. float64 to int64 if possible)
    excel_data.fillna

     excel_data.reindex()

    excel_data.rename()

    excel_data.replace()

    excel_data.astype()

    excel_data.duplicated()

    excel_data.unique()

    excel_data.drop_duplictad()

  • 相关阅读:
    你是通过什么渠道获取一般人不知道的知识和信息的?
    用python写MapReduce函数——以WordCount为例
    准确率,召回率,F值,机器学习分类问题的评价指标
    【RS】AutoRec: Autoencoders Meet Collaborative Filtering
    2018 推荐系统总结
    关于协同过滤推荐系统札记
    【RS】Wide & Deep Learning for Recommender Systems
    NeuCF源码中用到的模块(函数)
    【RS】:论文《Neural Collaborative Filtering》的思路及模型框架
    Keras 使用过程问题汇总
  • 原文地址:https://www.cnblogs.com/windyrainy/p/10943550.html
Copyright © 2011-2022 走看看