题目链接:http://codeforces.com/contest/431/problem/B
题目意思:给出5 * 5 的矩阵。从这个矩阵中选出合理的安排次序,使得happiness之和最大。当第i个人和第j个人talk 的时候,第i个人获得的happiness是g[i][j],第j 个人获得的happiness是g[j][i]。
好简单的一道题目,不知道昨晚徘徊好久都不敢打,五个for循环即可!数据量这么小......今天一次就过了...
谨以此来纪念自己的怯懦....
方法一:直接暴力枚举
1 #include <iostream> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <cstring> 5 using namespace std; 6 7 #define LL long long 8 int g[10][10]; 9 LL ans; 10 11 int main() 12 { 13 for (int i = 1; i <= 5; i++) 14 { 15 for (int j = 1; j <= 5; j++) 16 scanf("%d", &g[i][j]); 17 } 18 ans = 0; 19 for (int i = 1; i <= 5; i++) 20 { 21 for (int j = 1; j <= 5; j++) 22 { 23 if (i != j) 24 { 25 for (int k = 1; k <= 5; k++) 26 { 27 if (k != j && k != i) 28 { 29 for (int l = 1; l <= 5; l++) 30 { 31 if (l != k && l != i && l != j) 32 { 33 for (int p = 1; p <= 5; p++) 34 { 35 if (p != l && p != i && p != j && p != k) 36 { 37 // printf("i = %d, j = %d, k = %d, l = %d, p = %d ", i, j, k, l, p); 38 LL sum = g[i][j] + g[j][i] + g[j][k] + g[k][j] + 2 * (g[l][p] + g[p][l] + g[k][l] + g[l][k]); 39 ans = max(ans, sum); 40 } 41 } 42 } 43 } 44 } 45 } 46 } 47 } 48 } 49 printf("%lld ", ans); 50 return 0; 51 }
方法二:利用next_permutation (学人家代码写的)
1 #include <iostream> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <algorithm> 5 using namespace std; 6 7 #define LL long long 8 const int maxn = 5; 9 int grid[maxn+1][maxn+1]; 10 int t[maxn]; 11 LL ans, tmp; 12 13 int main() 14 { 15 for (int i = 0; i < maxn; i++) 16 { 17 for (int j = 0; j < maxn; j++) 18 scanf("%d", &grid[i][j]); 19 } 20 for (int i = 0; i < maxn; i++) 21 t[i] = i; 22 ans = 0; 23 do 24 { 25 //0123: 01 talk 23 talk 26 tmp = grid[t[0]][t[1]] + grid[t[1]][t[0]]; 27 tmp += grid[t[2]][t[3]] + grid[t[3]][t[2]]; 28 //1234: 12 talk 34 talk 29 tmp += grid[t[1]][t[2]] + grid[t[2]][t[1]]; 30 tmp += grid[t[3]][t[4]] + grid[t[4]][t[3]]; 31 //23: 23 talk 32 tmp += grid[t[2]][t[3]] + grid[t[3]][t[2]]; 33 //34: 34 talk 34 tmp += grid[t[3]][t[4]] + grid[t[4]][t[3]]; 35 36 ans = max(ans, tmp); 37 }while (next_permutation(t, t+maxn)); 38 printf("%lld ", ans); 39 return 0; 40 }