zoukankan      html  css  js  c++  java
  • DDIA

    本次看的是第3章, 数据存储与检索

    概览

    存储引擎分为2类, OLTP(事务处理)和OLAP(在线分析).

    一般用的数据库Oracle, MySQL, SQLServer等属于OLTP, 一般说的Data Warehouse(数据仓库)是OLAP, 一般用来生成报表.
    对于小数据来说, 普通的数据库可同时满足事务处理和在线分析的要求, 但是对于大公司, 多个业务海量数据, 就需要抽取-转换-加载(ETL) 和数据库仓库来做专门的分析.

    OLTP又分2类, 日志结构学派和就地更新学派.

    日志结构学派

    日志类型, 写入数据时直接附加到结尾, 性能很高; 读取时就比较麻烦, 所以要创建索引来提高读取速度, 同时写入时也要更新索引, 就降低了写入的速度. 以稍微降低写入速度来提高读取速度的trade off.

    哈希索引

    保留一个内存中的哈希映射,其中每个键都映射到一个数据文件中的字节偏移量,指明了可以找到对应值的位置

    由于是一直新增数据, 有一个问题就是如何避免磁盘用完. 一种好的解决方案是, 将日志分为特定大小的段,当日志增长到特定尺寸时关闭当前段文件,并开始写入一个新的段文件。然后,我们就可以对这些段进行压缩(compaction), 只保留最新的值. 由于压缩后的段可能比较小, 所以可以执行段合并的动作.

    SSTables和LSM树

    将哈希索引进行优化, 增加了一个要求键值对的序列按键排序. 这块没太看懂, 找了一篇博文参考, SSTables, LSM Tree 与 B-Tree.

    就地更新学派

    B树

    B树是一颗平衡二叉树, 只不过为了减少深度, 将单个节点包含了多个key, 很适合磁盘结构. 因为磁盘读取比内存慢很多, 一次读取多个key可以大大减少磁盘读取次数, 提高读取速度. 一般来说4层结构就足够保存大量的数据, 如果单节点包含500个key, 那么4层至少包含(2*500^4 - 1 = 1.25 * 10^11) 个key.

    B树 vs LSM树

    • 通常B树读取速度更快, LSM写入速度更快.
    • LSM树的查询有时会特别慢, 不像B树的查询相对更加可预测.
    • LSM树的压缩没配置好, 且写入吞吐量很大的情况下, 可能会导致压缩跟不上写入, 从而导致空间占用越来越大, 磁盘剩余空间越来越小, 磁盘用完. 因此要做好监控.
    • B树的一个优点是每个键只存在于索引中的一个位置,而日志结构化的存储引擎可能在不同的段中有相同键的多个副本。这个方面使得B树在想要提供强大的事务语义的数据库中很有吸引力:在许多关系数据库中,事务隔离是通过在键范围上使用锁来实现的,在B树索引中,这些锁可以直接连接到树.
    • 数据库一般都是B树, 或者B+树, 而新的存储结构, 用日志结构的越来越多, 如Kafka.
  • 相关阅读:
    在HTML中使用css3实现雪人动画效果
    不一样的函数防抖和节流
    2020全球C++及系统软件技术大会成功落下帷幕
    详解flex布局做骰子案例
    LeetCode-环形链表|+环形链表||
    03:成绩排序
    02:奇数单增序列
    谁考了第k名
    【23.59%】【hdu 5883】The Best Path
    【30.53%】【hdu 5878】I Count Two Three
  • 原文地址:https://www.cnblogs.com/winwink/p/DDIA2-StorageAndRetrieval.html
Copyright © 2011-2022 走看看