题目直接链接
题意:
某游戏规则:每次选定数字k(正整数),两人初始分数为1,获胜者分数乘k2,失败者分数成k,给你两个数字,判断是否可能是本游戏的两人的得分。
分析:
为啥题意我不写判断两个数可不可以表示成a*a*b和a*b*b呢,因为这样我后面就没的写了。。。好的,那我们证明一下这两个的等价性:假设有n局游戏,每局的数字为k1。。。kn,然后A获胜的局数是
a1。。。ax,B获胜的局数是b1。。。by,那么A的分数:k(a1)*k(a1)*。。。*k(ax)*k(ax)*k(b1)*。。。*k(by),同样的,b的得分:k(a1)*。。。*k(ax)*k(b1)*k(b1)*。。。*k(by)*k(by)于是令a=k(a1)*。。。*k(ax),b=k(b1)*。。。*k(by),那么A的得分:a*a*b,B的得分a*b*b,然后再反过来证,如果AB的得分可以表示成a*a*b和a*b*b那么一定有可能,直接构造:就两局第一局分数为a,A赢,第二局分数为b,B赢。证完等价之后,我们考虑一下怎么判断能不能表示成a*a*b和a*b*b,其实我们可以直接求出a,b来。我们另A的分数是x,B的分数是y,那么gcd(x,y)=a*b*gcd(a,b)。x/gcd(x,y)=a/gcd(a,b);y/gcd(x,y)=b/gcd(a,b);令t1=gcd(a,b)*gcd(a,b)*gcd(a,b)=x/(x/gcd(x,y)*x/gcd(x,y)*y/gcd(x,y));
令t2=y/(x/gcd(x,y)*y/gcd(x,y)*y/gcd(x,y)),要满足t1=t2=k3(k为整数)即可。证明很简单,首先满足能表示成a*a*b和a*b*b一定能满足t1=t2=k3(k为整数)(这么推过来的),满足t1=t2=k3也一定满足可以表示成a*a*b和a*b*b(都把a,b找出来了,肯定没问题),那么就好办了。
还有一个小小的问题,判断三次时最好不要从1到x二分,否则可能爆long long,如果不放心区间的话,判断时也不应写mid*mid*mid,总之要注意一些爆long long的地方。
代码:
#include <cstdio> long long G(long long a,long long b){ if(b==0) return a; return G(b,a%b); } int B(long long a){ long long l=1,r=a; while(l<=r){ long long mid=(l+r)/2; if(a%mid==0&&mid*mid==a/mid) return 0; else if(mid*mid<=a/mid) l=mid+1; else r=mid-1; } return 1; } int main(){ int n; scanf("%d",&n); long long js1,js2; for(int i=1;i<=n;i++){ scanf("%lld%lld",&js1,&js2); long long js=G(js1,js2); long long a=js1/js; long long b=js2/js; if(js1%(a*a*b)){ printf("No "); continue; } long long jsjs=js1/(a*a*b); if(B(jsjs)) printf("No "); else if(jsjs*a*b*b==js2) printf("Yes "); else printf("No "); } return 0; }