zoukankan      html  css  js  c++  java
  • EKF优化:协方差coff计算公式、意义、Code优化

        复习!复习!

        原文链接:http://blog.csdn.net/goodshot/article/details/8611178


    1.代码

    Matlab相关系数的意义:

    Eigen::MatrixXf  correlation_matrix = corrcoef( LocM );
    对行向量求相关系数 , 与列数无关,返回 cols()*cols() 矩阵...

    翻译成Eigen:
    还是自己写个函数吧
    //1.求协方差
    Eigen::MatrixXf CIcSearchM::cov(Eigen::MatrixXf &d1, Eigen::MatrixXf &d2)
    {
        Eigen::MatrixXf  CovM(1,1);
        assert(1 ==d1.cols() && 1 ==d2.cols() &&d1.cols()==d2.cols()  );
    
        //求协方差
        float Ex =0;float Ey=0;
        for (int i=0;i< d1.rows();++i){
            Ex +=d1(i);
            Ey +=d2(i);
        }
        Ex /=d1.rows();
        Ey /=d2.rows();
    
        for (int i=0;i< d1.rows();++i){
            CovM(0) += (d1(i)-Ex)*(d2(i)-Ey);
        }
        CovM(0) /= d1.rows() -1;
        return CovM;
    }
    //2.写入方差矩阵
    //求矩阵的相关系数!
    //返回矩阵A的列向量的相关系数矩阵//对行向量求相关系数 , 与行数无关,返回 cols()*cols() 矩阵...
    Eigen::MatrixXf CIcSearchM::corrcoef(Eigen::MatrixXf &M)
    {
    	// C(i,j)/SQRT(C(i,i)*C(j,j)).//C is the covariation Matrix
    	int Row= M.rows();
    	int Col= M.cols();
    	int Order= Col;//int Order= (std::max)(Row,Col);
    
    	Eigen::MatrixXf Coef(Order,Order);
    	for (int i=0;i<Order;++i){
    		for (int j=0;j<Order;++j){
    			Coef(i,j)= cov((Eigen::MatrixXf)M.col(i),(Eigen::MatrixXf)M.col(j))(0);
    		}
    	}
    	return Coef;
    }


    2.优化的代码

    使用Eigen计算1000维的方阵大概需要200ms的时间,相对于matlab默认开启GPU加速,时间上消耗的太多了。

    参考:比较OpenBLAS、Matlab、MKL、Eigen的基础计算性能

    优化的代码:

    //求矩阵的相关系数!一个原始公式的简化算法/优化算法
    //返回矩阵A的列向量的相关系数矩阵//对行向量求相关系数 , 与行数无关,返回 cols()*cols() 矩阵...
    Eigen::MatrixXf CIcSearchM::CorrcoefOpm(Eigen::MatrixXf &MI)
    {
    	Eigen::MatrixXf M =MI;
    	// C(i,j)/SQRT(C(i,i)*C(j,j)).//C is the covariation Matrix
    	//公式:
    	//temp = mysample - repmat(mean(mysample), 10, 1);
    	//result = temp' * temp ./ (size(mysample, 1) - 1)
    	int Row= M.rows();
    	int Col= M.cols();
    	int Order= Col;//int Order= (std::max)(Row,Col);
    
    	SYSTEMTIME sysP; 
    	GetLocalTime( &sysP ); 
    	int MileTsp = sysP.wSecond;
    	int MileTP = sysP.wMilliseconds;
    
    	Eigen::MatrixXf  CovM(Order,Order);//(1,Col);
    	Eigen::MatrixXf  E_M(1,Col);
    	//减去每一个维度的均值;确定一列为一个维度。
    	//std::cout<< "Mat Src :"<<std::endl;m_Testor.print_EigenMat( M);
    	for (int i =0;i< Col;++i)
    	{
    		//求均值
    		E_M(i) =M.col(i).sum()/M.rows();
    		//std::cout<< "E_M(i)" << E_M(i)<< std::endl;
    		M.col(i) = M.col(i)- E_M(i);
    		//
    	}
    
    	//SYSTEMTIME sysP2; 
    	//GetLocalTime( &sysP ); 
    	//int MileTsp2 = sysP.wSecond;
    	//int MileTP2 = sysP.wMilliseconds;
    	//int  DetaTp = MileTP2  - MileTP;
    	//int DetaTsp = MileTsp2 -MileTsp;
    	//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
    	//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
    
    	//std::cout<< "Mat E_M :"<<std::endl;m_Testor.print_EigenMat( M);
    	CovM = M.transpose();
    	//GetLocalTime( &sysP ); 
    	//MileTsp2 = sysP.wSecond;
    	//MileTP2 = sysP.wMilliseconds;
    	//DetaTp = MileTP2  - MileTP;
    	//DetaTsp = MileTsp2 -MileTsp;
    	//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
    	//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
    
    	//std::cout<< "Mat CovM :"<<std::endl;m_Testor.print_EigenMat( CovM);
    	CovM = CovM * M ;
    	//GetLocalTime( &sysP ); 
    	//MileTsp2 = sysP.wSecond;
    	//MileTP2 = sysP.wMilliseconds;
    	//DetaTp = MileTP2  - MileTP;
    	//DetaTsp = MileTsp2 -MileTsp;
    	//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
    	//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
    
    	//实现 ./ 函数 数值计算没有区别
    	CovM = CovM /(Order-1)/(Order-1);
    	//GetLocalTime( &sysP ); 
    	//MileTsp2 = sysP.wSecond;
    	//MileTP2 = sysP.wMilliseconds;
    	//DetaTp = MileTP2  - MileTP;
    	//DetaTsp = MileTsp2 -MileTsp;
    	//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
    	//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
    
    	//std::cout<< "Mat CovM :"<<std::endl;m_Testor.print_EigenMat( CovM);
    	//GetLocalTime( &sysP ); 
    	//MileTsp2 = sysP.wSecond;
    	//MileTP2 = sysP.wMilliseconds;
    	//DetaTp = MileTP2  - MileTP;
    	//DetaTsp = MileTsp2 -MileTsp;
    	//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
    	//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
    
    	//遍历一次
    	for (int i=0;i< Order;++i){
    		for (int j=0;j<Order;++j){
    			CovM(i,j) = sqrt(CovM(i,i)*CovM(j,j) );
    		}
    	}
    
    	//GetLocalTime( &sysP ); 
    	//MileTsp2 = sysP.wSecond;
    	//MileTP2 = sysP.wMilliseconds;
    	//DetaTp = MileTP2  - MileTP;
    	//DetaTsp = MileTsp2 -MileTsp;
    	//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
    	//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
    
    	//std::cout<< "Mat CovM :"<<std::endl;m_Testor.print_EigenMat( CovM);
    	return CovM;
    }

          稀疏矩阵可以加速到3ms,我去!终于可以实用了.....

  • 相关阅读:
    数据机构与算法学习(四)- 链表
    DFS深度优先
    LeetCode.98验证二叉树
    输入一个有符号整数,输出该整数的反转值。
    如何交换两个对象
    泛型简介,泛型类及使用
    一个普通的逻辑问题
    for循环
    第一次比赛唯一ACCEPT的题目笑哭
    输入100以内具有10个以上因子的整数 并输出它的因子
  • 原文地址:https://www.cnblogs.com/wishchin/p/9200095.html
Copyright © 2011-2022 走看看