复习!复习!
原文链接:http://blog.csdn.net/goodshot/article/details/8611178
1.代码:
Matlab相关系数的意义:
Eigen::MatrixXf correlation_matrix = corrcoef( LocM );对行向量求相关系数 , 与列数无关,返回 cols()*cols() 矩阵...
翻译成Eigen:
还是自己写个函数吧
//1.求协方差
Eigen::MatrixXf CIcSearchM::cov(Eigen::MatrixXf &d1, Eigen::MatrixXf &d2) { Eigen::MatrixXf CovM(1,1); assert(1 ==d1.cols() && 1 ==d2.cols() &&d1.cols()==d2.cols() ); //求协方差 float Ex =0;float Ey=0; for (int i=0;i< d1.rows();++i){ Ex +=d1(i); Ey +=d2(i); } Ex /=d1.rows(); Ey /=d2.rows(); for (int i=0;i< d1.rows();++i){ CovM(0) += (d1(i)-Ex)*(d2(i)-Ey); } CovM(0) /= d1.rows() -1; return CovM; }//2.写入方差矩阵
//求矩阵的相关系数! //返回矩阵A的列向量的相关系数矩阵//对行向量求相关系数 , 与行数无关,返回 cols()*cols() 矩阵... Eigen::MatrixXf CIcSearchM::corrcoef(Eigen::MatrixXf &M) { // C(i,j)/SQRT(C(i,i)*C(j,j)).//C is the covariation Matrix int Row= M.rows(); int Col= M.cols(); int Order= Col;//int Order= (std::max)(Row,Col); Eigen::MatrixXf Coef(Order,Order); for (int i=0;i<Order;++i){ for (int j=0;j<Order;++j){ Coef(i,j)= cov((Eigen::MatrixXf)M.col(i),(Eigen::MatrixXf)M.col(j))(0); } } return Coef; }
2.优化的代码
使用Eigen计算1000维的方阵大概需要200ms的时间,相对于matlab默认开启GPU加速,时间上消耗的太多了。
参考:比较OpenBLAS、Matlab、MKL、Eigen的基础计算性能
优化的代码:
//求矩阵的相关系数!一个原始公式的简化算法/优化算法 //返回矩阵A的列向量的相关系数矩阵//对行向量求相关系数 , 与行数无关,返回 cols()*cols() 矩阵... Eigen::MatrixXf CIcSearchM::CorrcoefOpm(Eigen::MatrixXf &MI) { Eigen::MatrixXf M =MI; // C(i,j)/SQRT(C(i,i)*C(j,j)).//C is the covariation Matrix //公式: //temp = mysample - repmat(mean(mysample), 10, 1); //result = temp' * temp ./ (size(mysample, 1) - 1) int Row= M.rows(); int Col= M.cols(); int Order= Col;//int Order= (std::max)(Row,Col); SYSTEMTIME sysP; GetLocalTime( &sysP ); int MileTsp = sysP.wSecond; int MileTP = sysP.wMilliseconds; Eigen::MatrixXf CovM(Order,Order);//(1,Col); Eigen::MatrixXf E_M(1,Col); //减去每一个维度的均值;确定一列为一个维度。 //std::cout<< "Mat Src :"<<std::endl;m_Testor.print_EigenMat( M); for (int i =0;i< Col;++i) { //求均值 E_M(i) =M.col(i).sum()/M.rows(); //std::cout<< "E_M(i)" << E_M(i)<< std::endl; M.col(i) = M.col(i)- E_M(i); // } //SYSTEMTIME sysP2; //GetLocalTime( &sysP ); //int MileTsp2 = sysP.wSecond; //int MileTP2 = sysP.wMilliseconds; //int DetaTp = MileTP2 - MileTP; //int DetaTsp = MileTsp2 -MileTsp; //std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl; //std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl; //std::cout<< "Mat E_M :"<<std::endl;m_Testor.print_EigenMat( M); CovM = M.transpose(); //GetLocalTime( &sysP ); //MileTsp2 = sysP.wSecond; //MileTP2 = sysP.wMilliseconds; //DetaTp = MileTP2 - MileTP; //DetaTsp = MileTsp2 -MileTsp; //std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl; //std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl; //std::cout<< "Mat CovM :"<<std::endl;m_Testor.print_EigenMat( CovM); CovM = CovM * M ; //GetLocalTime( &sysP ); //MileTsp2 = sysP.wSecond; //MileTP2 = sysP.wMilliseconds; //DetaTp = MileTP2 - MileTP; //DetaTsp = MileTsp2 -MileTsp; //std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl; //std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl; //实现 ./ 函数 数值计算没有区别 CovM = CovM /(Order-1)/(Order-1); //GetLocalTime( &sysP ); //MileTsp2 = sysP.wSecond; //MileTP2 = sysP.wMilliseconds; //DetaTp = MileTP2 - MileTP; //DetaTsp = MileTsp2 -MileTsp; //std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl; //std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl; //std::cout<< "Mat CovM :"<<std::endl;m_Testor.print_EigenMat( CovM); //GetLocalTime( &sysP ); //MileTsp2 = sysP.wSecond; //MileTP2 = sysP.wMilliseconds; //DetaTp = MileTP2 - MileTP; //DetaTsp = MileTsp2 -MileTsp; //std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl; //std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl; //遍历一次 for (int i=0;i< Order;++i){ for (int j=0;j<Order;++j){ CovM(i,j) = sqrt(CovM(i,i)*CovM(j,j) ); } } //GetLocalTime( &sysP ); //MileTsp2 = sysP.wSecond; //MileTP2 = sysP.wMilliseconds; //DetaTp = MileTP2 - MileTP; //DetaTsp = MileTsp2 -MileTsp; //std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl; //std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl; //std::cout<< "Mat CovM :"<<std::endl;m_Testor.print_EigenMat( CovM); return CovM; }
稀疏矩阵可以加速到3ms,我去!终于可以实用了.....