我对显著性水平的理解是:能承担失误水平的大小。即排名第一答案所说的“犯第一类错误的最大概率”的大小。
某药品商宣传能治愈某病的概率是90%。(即原假设)
一个医生不相信宣传,于是做个了实验验证,15个人治好了11个人。而15个人应该能够治愈13.5个人。那么宣传是不是骗人的呢?
这时候用假设性检验来验证(采用显著性水平为5%检验),假设这15个人服从二项分布,P(X<=11)的概率等于5.6%,这个p值大于显著性水平。而我们的显著性水平是5%,也就是说,小于5%的是个小概率事件,治愈了11个人并不是一个小概率事件,在治愈率90%的情况下你是有可能刚好抽到治愈11个人的情况。我们没有足够的证据证明药品商是骗人的,所以我们接受他的宣传(接受原假设),即治愈率90%。
这时候有人会问,如果15个人治愈了9个人呢,我们经过计算发现,p值小于5%,这时候处于拒绝域。因为,你们宣传治愈率90%,可是我做了抽样,发现15个人只治好了9个人,概率太小了,基本不可能遇到的情况(小概率事件)怎么刚好让我遇到?所以,我们有足够的证据证明宣传是假的。这时候我们采用备选假设,推翻原假设。
参考文献:《深入浅出统计学》
作者:接近美
链接:https://www.zhihu.com/question/31615254/answer/149397914
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。