zoukankan      html  css  js  c++  java
  • 青蛙的约会(扩展欧几里得)

    Description

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

    Input

    输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

    Output

    输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

    Sample Input

    1 2 3 4 5

    Sample Output

    4

    解题思路:首先根据题目中所给的信息建模,
    两只青蛙跳t次之后碰面 (x + t * m) - (y + t * n) = k * L
    未知数为t和k
    移项合并后变为 (n-m)*t + k*L = x-y
    n-m=a
    L=b
    x-y =c
    a*t + b*k = c
    这是一个两个未知数的不定方程
    在这里我们所要求的便是t,并且是最小的非负数t,那么用什么方法呢?
    扩展欧几里得!!!
    a*x+b*y=gcd(a,b)!!!

    利用扩展欧几里得算法求解不定方程a * x + b * y = c的整数解的求解全过程,步骤如下:

    1、先计算Gcd(a,b),若c不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = c',此时Gcd(a',b')=1;

    2、利用扩展欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则c' * x0,c' * y0是方程a' * x + b' * y = c'的一组整数解;

    3、根据数论中的相关定理,可得方程a' * x + b' * y = c'的所有整数通解为:

    x = c' * x0 + b' * t

    y = c' * y0 - a' * t (t=0,1,2,……)

    我们通过扩展欧几里得算出的x0只是一个特解,而我们需要的则是一个最小的特解,所以x0有两种可能:一种就是x0就是所求的结果,一种是x0大于所求的结果。对此我们的策略是通过x = c' * x0 + b' * t,令x=0,得到x最小时t的取值t0,这时候再改造通解公式x = c' * x0 - b' * t0,使用减号来替代加号是为了得到一个最小值。这时候得到的x可能是负值,那么就需要再加上一个周期b即可。

    
    
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #define ll long long int
     5 using namespace std;
     6 ll gcd(ll a,ll b)
     7 {
     8     if(b==0)
     9     {
    10         return a;
    11     }
    12     else
    13     {
    14         gcd(b,a%b);
    15     }
    16 }
    17 void exgcd(ll a,ll b,ll &x,ll &y)
    18 {
    19     if(b==0)
    20     {
    21         x=1;
    22         y=0;
    23         return ;
    24     }
    25     exgcd(b,a%b,x,y);
    26     ll t=x;
    27     x=y;
    28     y=t-a/b*y;
    29 }
    30 int main()
    31 {
    32     ll x,y,m,n,l,d,r,c,a,b,t,ans;
    33     ll xx,yy;
    34     scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
    35     a=n-m;
    36     b=l;
    37     c=x-y;
    38     d=gcd(a,b);
    39     if(c%d!=0)
    40     {
    41         printf("Impossible
    ");
    42     }
    43     else
    44     {
    45         a=a/d;
    46         b=b/d;
    47         c=c/d;
    48         exgcd(a,b,xx,yy);
    49         t=c*xx/b;///方程的所有解x=c*xx+b*t,令x=0可以求出x最小时t的取值
    50             
    51         ans=c*xx-t*b;
    52         if(ans<0)
    53         {
    54             ans=ans+b;
    55         }
    56         printf("%lld
    ",ans);
    57     }
    58     return 0;
    59 }


  • 相关阅读:
    Linux alias 设置快捷命令,打包
    网站改版了
    团队建设经典故事
    easyui中jquery重复引用问题(tab内存泄露问题)
    EasyUI 兼容 IE6 方法总结
    EasyUI datagrid frozencolumn的bug???
    docker-compose快速部署环境笔记
    MySQL获取距离
    Jenkins Publish FTP远程部署过程
    慎用uniapp开发商业级应用
  • 原文地址:https://www.cnblogs.com/wkfvawl/p/9600477.html
Copyright © 2011-2022 走看看