zoukankan      html  css  js  c++  java
  • Is It A Tree?(并查集)

    Description

    A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties.

    There is exactly one node, called the root, to which no directed edges point.
    Every node except the root has exactly one edge pointing to it.
    There is a unique sequence of directed edges from the root to each node.
    For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.

    In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

    Input

    The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero.

    Output

    For each test case display the line "Case k is a tree." or the line "Case k is not a tree.", where k corresponds to the test case number (they are sequentially numbered starting with 1).

    Sample Input

    6 8  5 3  5 2  6 4
    5 6  0 0
    
    8 1  7 3  6 2  8 9  7 5
    7 4  7 8  7 6  0 0
    
    3 8  6 8  6 4
    5 3  5 6  5 2  0 0
    -1 -1

    Sample Output

    Case 1 is a tree.
    Case 2 is a tree.
    Case 3 is not a tree.


    题目意思:判断所给的数据能否构成一颗树。

    解题思路:题目中所给的是有向树,并给出了性质:
    1.只有一个节点,称为根节点,没有定向边指向它。
    2.除了根节点外,每个节点都只有有一条指向它的边。
    3.从树根到任一结点有一条有向通路。
    抽象过来就是三个条件:
    1.只有一个入度为0的点,作为根节点。
    2.除根节点外,其他点的入度只能为1。
    3.所有点都能连通,也就是所有点需要在一个集合中,使用并查集来划分集合。

    注意!!!可能会出现空树,也就是0 0,空树也是树。
      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 using namespace std;
      5 const int MAX=1e4+10;
      6 int pre[MAX];///并查集记录父亲节点
      7 int in[MAX];///入度
      8 int vis[MAX];///节点是否存在
      9 void init()
     10 {
     11     int i;
     12     for(i=1; i<MAX; i++)
     13     {
     14         vis[i]=0;
     15         in[i]=0;
     16         pre[i]=i;
     17     }
     18 }
     19 int Find(int x)
     20 {
     21     if(pre[x]==x)
     22     {
     23         return x;
     24     }
     25     else
     26     {
     27         return Find(pre[x]);
     28     }
     29 }
     30 void Union(int root1,int root2)
     31 {
     32     int x,y;
     33     x=Find(root1);
     34     y=Find(root2);
     35     if(x!=y)
     36     {
     37         pre[x]=y;
     38     }
     39 }
     40 int main()
     41 {
     42     int i,root,counts,a,b,flag,ans=1;
     43     while(scanf("%d%d",&a,&b)!=EOF)
     44     {
     45         if(a==-1&&b==-1)
     46         {
     47             break;
     48         }
     49         if(a==0&&b==0)///空树
     50         {
     51             printf("Case %d is a tree.
    ",ans);
     52             ans++;
     53             continue;
     54         }
     55         init();
     56         vis[a]=1;
     57         vis[b]=1;
     58         in[b]++;
     59         Union(a,b);
     60         while(scanf("%d%d",&a,&b)!=EOF)
     61         {
     62             if(a==0&&b==0)
     63             {
     64                 break;
     65             }
     66             vis[a]=1;
     67             vis[b]=1;
     68             in[b]++;
     69             Union(a,b);
     70         }
     71         flag=1;
     72         root=0;
     73         counts=0;
     74         for(i=1;i<MAX;i++)
     75         {
     76             if(vis[i]&&in[i]==0)///根节点个数
     77             {
     78                 root++;
     79             }
     80             if(in[i]>=2)///除根节点外,其他点入度需为1
     81             {
     82                 flag=0;
     83             }
     84             if(vis[i]&&pre[i]==i)///所有点都在一个集合中
     85             {
     86                 counts++;
     87             }
     88         }
     89         if(root!=1||counts>1)
     90         {
     91             flag=0;
     92         }
     93         if(flag)
     94         {
     95             printf("Case %d is a tree.
    ",ans);
     96             ans++;
     97         }
     98         else
     99         {
    100             printf("Case %d is not a tree.
    ",ans);
    101             ans++;
    102         }
    103     }
    104     return 0;
    105 }
  • 相关阅读:
    matlab从ECG信号数据趋势项的消除
    matlab使用移动平均滤波器、重采样和Hampel过滤器进行信号平滑处理
    R语言如何做马尔科夫转换模型markov switching model
    python主题建模可视化LDA和T-SNE交互式可视化
    R语言Wald检验 vs 似然比检验
    R语言rjags使用随机效应进行臭氧数据分析
    matlab对MCMC贝叶斯方法用于加筋复合板的冲击载荷识别
    4. 纯 CSS 创作一个金属光泽 3D 按钮特效
    3.纯 CSS 创作一个容器厚条纹边框特效
    2.纯 CSS 创作一个矩形旋转 loader 特效
  • 原文地址:https://www.cnblogs.com/wkfvawl/p/9671102.html
Copyright © 2011-2022 走看看