zoukankan      html  css  js  c++  java
  • OPENCV 笔记

    //读视频
    #include "stdafx.h"
    #include <opencv2/opencv.hpp>
    #include <opencv2highguihighgui.hpp>
    using namespace std;
    using namespace cv;
    int _tmain(int argc, _TCHAR* argv[])
    {
     VideoCapture cap;
     cap.open("Curve1.avi");
     if( !cap.isOpened() )
      return -1;
     namedWindow(winname,CV_WINDOW_AUTOSIZE);
     Mat frame;
     for(;;)
     {
      cap>>frame;
      imshow(“winname”, frame);
      char c=waitKey(33);
      if (c==27) {
       break;
      }
     }
     return 0;
    }

    //图像缩放
    double fScale = 2.0;  //缩放倍数
    Size dsize = Size(SrcImage.cols * fScale,SrcImage.rows * fScale);
    Mat DstImage(dsize,SrcImage.type());
    resize(SrcImage,DstImage,dsize);

    //添加ROI
    Mat logo;
    Mat imageROI;
    imageROI = SrcImage(cv::Rect(10,10,logo.cols,logo.rows));
    logo.copyTo(imageROI);

    //二值化
    Mat dst; 
    threshold(gray, dst, 0, 255, CV_THRESH_OTSU);//最大间内方差
    threshold(gray, dst, 100, 255, CV_THRESH_BINARY);

    // 获取最大值和最小值
    Mat Hist;
    double minVal = 0;
    double maxVal = 0;
    minMaxLoc(hist,&minVal, &maxVal, 0, 0);  //  cv中用的是cvGetMinMaxHistValue

    //显示直方图的图像
    int scale = 1;
    int size = Hist.rows;
    Mat imageShow(size * scale, size, CV_8U, Scalar(0));
    int hpt = saturate_cast<int>(0.9 * size);
    for(int i = 0; i < 270; i++)
    {
        float value = hist.at<uchar>(i);           //   注意hist中是float类型    cv中用cvQueryHistValue_1D
        int realValue = saturate_cast<int>(value * hpt/maxVal);
        rectangle(imageShow,Point(size - 1, i*scale), Point(size - realValue, (i+1)*scale - 1), Scalar(255));
    }
    imshow("showImage", imageShow);

    //计算时间
    double t = (double)getTickCount();//开始时间
    for (int i = 0; i <= 1000; i++){}//可替换成其他代码
    t = (double)getTickCount() - t;//代码运行时间=结束时间-开始时间
    printf("execution time = %gms ", t*1000. / getTickFrequency());//转换时间单位并输出代码运行时间

    //分解合并三基色
    Mat mergeImage;
    vector<Mat> channels; //定义一个Mat向量容器保存拆分后的数据
    split(srcImage,channels); //通道的拆分
    imageBlue = channels.at(0); //提取蓝色通道的数据
    imageGreen = channels.at(1);//提取绿色通道的数据
    imageRed = channels.at(2);//提取红色通道的数据
    merge(channels,mergeImage); //对拆分的通道数据合并

    //直方图匹配
    void cvMatchHist( Mat &src, Mat &dst)
    {
     int src_hist[256] = {0};
     for (int i = 0; i < src.rows; i++)
     {
      for (int j = 0; j < src.cols; j++)
      {
       int k = src.at<uchar>(i, j);
       src_hist[k]++;
      }
     }
     int lre = 0;
     for (int i = 0; i < 256; i++)
     {
      lre += src_hist[i];
      src_hist[i] = lre;
     }
     int dst_hist[256] = {0};
     for (int i = 0; i < src.rows; i++)
     {
      for (int j = 0; j < src.cols; j++)
      {
       int k = dst.at<uchar>(i, j);
       dst_hist[k]++;
      }
     }
     lre = 0;
     for (int i = 0; i < 256; i++)
     {
      lre += dst_hist[i];
      dst_hist[i] = lre;
     }
     for (int i = 0; i < 256; i++)
     {
      int abs_min = 1000;
      for (int j = 0; j < 256; j++)
      {
       if (abs(src_hist[i] - dst_hist[i]) < abs_min)
       {
        abs_min = abs(src_hist[i] - dst_hist[i]);
        src_hist[i] = dst_hist[i];
       }
      }
     }
     for (int i = 0; i < src.rows; i++)
     {
      for (int j = 0; j < src.cols; j++)
      {
       int k = src.at<uchar>(i, j);
       src.at<uchar>(i, j) = uchar(src_hist[k] * 255 / src_hist[255]);
      }
     }
    }

     //opnecv3 lib

    opencv_ts300d.lib
    opencv_world300d.lib

    //-- Check its extreme values
    cv::minMaxLoc( disp_l, &minVal, &maxVal );
    cout<<"Min disp: Max value"<< minVal<<maxVal; //numberOfDisparities.= (maxVal - minVal)

    //-- Display it as a CV_8UC1 image
    disp_l.convertTo(disp8u_l, CV_8U, 255/(maxVal - minVal));//(numberOfDisparities*16.)

    cv::minMaxLoc( disp_r, &minVal, &maxVal );
    cout<<"Min disp: Max value"<< minVal<<maxVal; //numberOfDisparities.= (maxVal - minVal)

    //-- Display it as a CV_8UC1 image
    disp_r.convertTo(disp8u_r, CV_8U, 255/(maxVal - minVal));//(numberOfDisparities*16.)

    cv::normalize(disp8u_l, disp8u_l, 0, 255, CV_MINMAX, CV_8UC1); // obtain normalized image
    cv::normalize(disp8u_r, disp8u_r, 0, 255, CV_MINMAX, CV_8UC1); // obtain normalized image

    //Cmake opencv

    set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/CMakeScripts)
    set(OpenCV_DIR D:/Program/opencv2.4.9/build)

    //输入图像
    //输出图像
    //输入图像颜色通道数
    //x方向阶数
    //y方向阶数
    Sobel(src,dst,src.depth(),1,1);
    imwrite("sobel.jpg",dst);

    //输入图像
    //输出图像
    //输入图像颜色通道数
    Laplacian(src,dst,src.depth());
    imwrite("laplacian.jpg",dst);

    //输入图像
    //输出图像
    //彩色转灰度
    cvtColor(src,src,CV_BGR2GRAY); //canny只处理灰度图

    //输入图像
    //输出图像
    //低阈值
    //高阈值,opencv建议是低阈值的3倍
    //内部sobel滤波器大小
    Canny(src,dst,50,150,3);
    imwrite("canny.jpg",dst);

    //截取mat

    Mat left_i = left.rowRange(row0, row1);
    Mat right_i = right.colRange(row0, row1);

    // Iplimage转mat

    cvarrToMat

    //Mat 保存为txt

    string labelname("disp.txt");
    ofstream file(labelname);
    if (!file.is_open())
    {
    return 0;
    }

    for (int i = 0; i < disp.rows; i++)
    {
    for (int j = 0; j < disp.cols; j++)
    {
    file << disp.at<short>(i,j) << ",";
    }
    file << " ";
    }
    file.close();

  • 相关阅读:
    vagrant 的安装与使用
    vagrant 的安装与使用
    rz、sz (上传下载)命令参数的解释
    rz、sz (上传下载)命令参数的解释
    TensorFlow 学习(十五)—— tensorflow.python.platform
    音乐的作曲形式
    vc中edit控件使用总结
    引用 LPSTR、LPCSTR、LPTSTR、LPCTSTR、LPWSTR及LPCWSTR的意义及区别
    编译原理三大经典书籍(龙书 虎书 鲸书)
    VS2003与Win7的兼容性问题
  • 原文地址:https://www.cnblogs.com/wl-v/p/5822317.html
Copyright © 2011-2022 走看看