1.编程实现将 RDD 转换为 DataFrame
源文件内容如下(包含 id,name,age):
1,Ella,36 2,Bob,29 3,Jack,29 |
请将数据复制保存到 Linux 系统中,命名为 employee.txt,实现从 RDD 转换得到DataFrame,并按“id:1,name:Ella,age:36”的格式打印出 DataFrame 的所有数据。请写出程序代码。
import org.apache.spark.sql.types._
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
object RDDtoDF {
def main(args: Array[String]) {
val spark=SparkSession.builder().appName("RddToFrame").master("local").getOrCreate()
import spark.implicits._
val employeeRDD=spark.sparkContext.textFile("file:///usr/local/spark/employee.txt")
val schemaString="id name age"
val fields=schemaString.split(" ").map(fieldName=>StructField
(fieldName,StringType,nullable = true))
val schema = StructType(fields)
val rowRDD = employeeRDD.map(_.split(",")).map(attributes =>
Row(attributes(0).trim, attributes(1), attributes(2).trim))
val employeeDF = spark.createDataFrame(rowRDD, schema)
employeeDF.createOrReplaceTempView("employee")
val results=spark.sql("select id,name,age from employee")
results.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show()
}
}
2.编程实现利用 DataFrame 读写 MySQL 的数据
(1)在 MySQL 数据库中新建数据库 sparktest,再创建表 employee,包含如表 6-2 所示的
两行数据。
表 6-2 employee 表原有数据
id | name | gender | Age |
1 | Alice | F | 22 |
2 | John | M | 25 |
打开mysql
(2)配置 Spark 通过 JDBC 连接数据库 MySQL,编程实现利用 DataFrame 插入如表 6-3 所示的两行数据到 MySQL 中,最后打印出 age 的最大值和 age 的总和。
表 6-3 employee 表新增数据
id | name | gender | age |
3 | Mary | F | 26 |
4 | Tom | M | 23 |
import java.util.Properties
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
object TestMySQL {
def main(args: Array[String]): Unit = {
val spark=SparkSession.builder().appName("TestMySQL").master("local").getOrCreate()
import spark.implicits._
val employeeRDD=spark.sparkContext.parallelize(Array("3 Mary F 26","4 Tom M 23")).map(_.split(" "))
val schema=StructType(List(StructField("id",IntegerType,
true),StructField("name",StringType,true),StructField("gender",StringType,true),
StructField("age",IntegerType,true)))
val rowRDD=employeeRDD.map(p=>Row(p(0).toInt,p(1).trim,p(2).trim,p(3).toInt))
val employeeDF=spark.createDataFrame(rowRDD,schema)
val prop=new Properties()
prop.put("user","root")
prop.put("password","wangli")
prop.put("driver","com.mysql.jdbc.Driver")
employeeDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/sparktest","sparktest.employee",prop)
val jdbcDF = spark.read.format("jdbc").option("url",
"jdbc:mysql://localhost:3306/sparktest").option("driver","com.mysql.jdbc.Driver").option("dbtable","employee")
.option("user","root").option("password", "wangli").load()
jdbcDF.agg("age" -> "max", "age" -> "sum").show()
}
}