zoukankan      html  css  js  c++  java
  • 神经网络一(Neural Network)

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    import numpy as np#矩阵运算
    
    
    def tanh(x):
        return np.tanh(x)
    
    
    def tanh_deriv(x):#对tanh求导
        return 1.0 - np.tanh(x)*np.tanh(x)
    
    
    def logistic(x):#s函数
        return 1/(1 + np.exp(-x))
    
    
    def logistic_derivative(x):#对s函数求导
        return logistic(x)*(1-logistic(x))
    
    
    class NeuralNetwork:#面向对象定义一个神经网络类
        def __init__(self, layers, activation='tanh'):#下划线构造函数self 相当于本身这个类的指针 layer就是一个list 数字代表神经元个数
            """
            :param layers: A list containing the number of units in each layer.
            Should be at least two values
            :param activation: The activation function to be used. Can be
            "logistic" or "tanh"
            """
            if activation == 'logistic':
                self.activation = logistic#之前定义的s函数
                self.activation_deriv = logistic_derivative#求导函数
            elif activation == 'tanh':
                self.activation = tanh#双曲线函数
                self.activation_deriv = tanh_deriv#求导双曲线函数
    
            self.weights = []#初始化一个list作为   权重
            #初始化权重两个值之间随机初始化
            for i in range(1, len(layers) - 1):#有几层神经网络 除去输出层
                #i-1层 和i层之间的权重 随机生成layers[i - 1] + 1 *  layers[i] + 1 的矩阵 -0.25-0.25
                self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
                #i层和i+1层之间的权重
                self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)
    
        def fit(self, X, y, learning_rate=0.2, epochs=10000):#训练神经网络
            #learning rate
            X = np.atleast_2d(X)#x至少2维
            temp = np.ones([X.shape[0], X.shape[1]+1])#初始化一个全为1的矩阵
            temp[:, 0:-1] = X  # adding the bias unit to the input layer
            X = temp
            y = np.array(y)
    
            for k in range(epochs):
                i = np.random.randint(X.shape[0])#随机选行
                a = [X[i]]
    
                for l in range(len(self.weights)):  #going forward network, for each layer
                    #选择一条实例与权重点乘 并且将值传给激活函数,经过a的append 使得所有神经元都有了值(正向)
                    a.append(self.activation(np.dot(a[l], self.weights[l])))  #Computer the node value for each layer (O_i) using activation function
                error = y[i] - a[-1]  #Computer the error at the top layer 真实值与计算值的差(向量)
                #通过求导 得到权重应当调整的误差
                deltas = [error * self.activation_deriv(a[-1])] #For output layer, Err calculation (delta is updated error)
    
                #Staring backprobagation 更新weight
                for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer 每次减一
                    #Compute the updated error (i,e, deltas) for each node going from top layer to input layer
    
                    deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
                deltas.reverse()
                for i in range(len(self.weights)):
                    layer = np.atleast_2d(a[i])
                    delta = np.atleast_2d(deltas[i])
                    self.weights[i] += learning_rate * layer.T.dot(delta)
    
        def predict(self, x):
            x = np.array(x)
            temp = np.ones(x.shape[0]+1)
            temp[0:-1] = x
            a = temp
            for l in range(0, len(self.weights)):
                a = self.activation(np.dot(a, self.weights[l]))
            return a
    

     异或运算 

    from NeuralNetwork import NeuralNetwork
    import numpy as np
    
    nn = NeuralNetwork([2, 2, 1], 'tanh')
    X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
    y = np.array([0, 1, 1, 0])
    nn.fit(X, y)
    for i in [[0, 0], [0, 1], [1, 0], [1, 1]]:
        print(i, nn.predict(i))
    

     

    ([0, 0], array([-0.00475208]))
    ([0, 1], array([ 0.99828477]))
    ([1, 0], array([ 0.99827186]))
    ([1, 1], array([-0.00776711]))  

     手写体识别

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    # 每个图片8x8  识别数字:0,1,2,3,4,5,6,7,8,9
    
    import numpy as np
    from sklearn.datasets import load_digits
    from sklearn.metrics import confusion_matrix, classification_report
    from sklearn.preprocessing import LabelBinarizer
    from NeuralNetwork import NeuralNetwork
    from sklearn.model_selection import train_test_split
    
    
    digits = load_digits()
    X = digits.data
    y = digits.target
    X -= X.min()  # normalize the values to bring them into the range 0-1
    X /= X.max()
    
    nn = NeuralNetwork([64, 100, 10], 'logistic')
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    labels_train = LabelBinarizer().fit_transform(y_train)
    labels_test = LabelBinarizer().fit_transform(y_test)
    print "start fitting"
    nn.fit(X_train, labels_train, epochs=3000)
    predictions = []
    for i in range(X_test.shape[0]):
        o = nn.predict(X_test[i])
        predictions.append(np.argmax(o))
    print confusion_matrix(y_test, predictions)
    print classification_report(y_test, predictions)
    

     

    confusion_matrix
    precision    recall  f1-score   support
    
              0       1.00      0.97      0.99        34
              1       0.75      0.91      0.82        46
              2       1.00      0.92      0.96        50
              3       1.00      0.92      0.96        51
              4       0.94      0.91      0.92        53
              5       0.95      0.96      0.96        57
              6       0.97      0.95      0.96        38
              7       0.88      1.00      0.93        35
              8       0.88      0.83      0.85        42
              9       0.86      0.82      0.84        44
    
    avg / total       0.92      0.92      0.92       450
    

      

  • 相关阅读:
    常用到的Linux基础命令
    adb linux
    adb,monkey,perfdog的区别
    postman中的变量与使用
    fiddler教程-抓包,弱网,断点,mock等
    linux启动服务和开机自启动设置
    .NET Framework 版本和依赖关系
    C#中的Guid
    EPL II 编程打印
    Button 类
  • 原文地址:https://www.cnblogs.com/wlc297984368/p/7467254.html
Copyright © 2011-2022 走看看