zoukankan      html  css  js  c++  java
  • POJ

    Description

    The explosively increasing network data in various application domains has raised privacy concerns for the individuals involved. Recent studies show that simply removing the identities of nodes before publishing the graph/social network data does not guarantee privacy. The structure of the graph itself, along with its basic form the degree of nodes, can reveal the identities of individuals.

    To address this issue, we study a specific graph-anonymization problem. We call a graph k-anonymous if for every node v, there exist at least k-1 other nodes in the graph with the same degree as v. And we are interested in achieving k-anonymous on a graph with the minimum number of graph-modification operations.

    We simplify the problem. Pick n nodes out of the entire graph G and list their degrees in ascending order. We define a sequence k-anonymous if for every element s, there exist at least k-1 other elements in the sequence equal to s. To let the given sequence k-anonymous, you could do one operation only—decrease some of the numbers in the sequence. And we define the cost of the modification the sum of the difference of all numbers you modified. e.g. sequence 2, 2, 3, 4, 4, 5, 5, with k=3, can be modified to 2, 2, 2, 4, 4, 4, 4, which satisfy 3-anonymous property and the cost of the modification will be |3-2| + |5-4| + |5-4| = 3.

    Give a sequence with n numbers in ascending order and k, we want to know the modification with minimal cost among all modifications which adjust the sequence k-anonymous.

    Input

    The first line of the input file contains a single integer T (1 ≤ T ≤ 20) – the number of tests in the input file. Each test starts with a line containing two numbers n (2 ≤ n ≤ 500000) – the amount of numbers in the sequence and k (2 ≤ k ≤ n). It is followed by a line with n integer numbers—the degree sequence in ascending order. And every number s in the sequence is in the range [0, 500000].

    Output

    For each test, output one line containing a single integer—the minimal cost.

    Sample Input

    2

    7 3

    2 2 3 4 4 5 5

    6 2

    0 3 3 4 8 9

    Sample Output

    3

    5

    思路:dp[i]=dp[j]-a[j+1]*(i-j)+(s[i]-s[j]) 表示前i个数 i~j-1全部赋值a[j-1] 的最小花费

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    ll a[500007];
    ll s[500007];
    ll q[500007];
    ll dp[500007];
    ll dy(ll j,ll k){ //由于分子可能为0 所以要用乘积的形式 
        return (dp[j]-s[j]+a[j+1]*j-dp[k]+s[k]-a[k+1]*k);
    }
    ll dx(ll j,ll k){
        return (a[j+1]-a[k+1]);
    }
    int main(){
        int t;
        scanf("%d",&t);
        while(t--){
            int n,k;
            scanf("%d%d",&n,&k);
            for(int i=1;i<=n;i++){
                scanf("%lld",a+i);
                s[i]=s[i-1]+a[i];
            }
            int l,r; l=r=1;
            for(int i=k;i<=n;i++){
                while(l<r&&dy(q[l],q[l+1])>i*dx(q[l],q[l+1])) l++;
                dp[i]=dp[q[l]]-a[q[l]+1]*(i-q[l])+(s[i]-s[q[l]]);
                if(i-k+1>=k){ //转移的状态一定要满足 k<=j<=i-k
                    while(l<r&&dy(q[r-1],q[r])*dx(q[r],i-k+1)>=dy(q[r],i-k+1)*dx(q[r-1],q[r])) r--;
                    q[++r]=i-k+1;
                }
            }
            printf("%lld
    ",dp[n]);
        }
        return 0;
    }
  • 相关阅读:
    文件光标移动
    python的版本的差别 "2","3"
    java通过jdbc操作Excel
    qt通过odbc操作Excel
    qt读取oracle表数据
    virtual box安装oracle_rac_10g
    oracle rac +standby
    rac不完全恢复
    rac完全恢复学习
    oracle rac搭建(三)--安装中的问题
  • 原文地址:https://www.cnblogs.com/wmj6/p/10800045.html
Copyright © 2011-2022 走看看