Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
Sample Output
8
题意:给你一棵树,问你树上路径长度小于等于k的路径数量
思路:点分治模板题
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<string> #include<vector> #include<stack> #include<bitset> #include<cstdlib> #include<cmath> #include<set> #include<list> #include<deque> #include<map> #include<queue> #define ll long long int using namespace std; inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;} int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1}; int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1}; const int inf=0x3f3f3f3f; const ll mod=1e9+7; int head[10007],vis[10007],d[10007]; struct node{ int to,v,next; }; node edge[10007<<1]; int cnt,ans,n,k; void init(){ cnt=0; ans=0; memset(head,0,sizeof(head)); memset(vis,0,sizeof(vis)); } void add(int from,int to,int val){ edge[++cnt].v=val; edge[cnt].to=to; edge[cnt].next=head[from]; head[from]=cnt; } int son[10007]; //儿子节点数 int now_size; //子树的最小节点数,用于找重心 int sz; //当前操作树的节点数 int root; //当前根节点 void find_root(int u,int fa){ //找树重心 son[u]=1; int res=0; for(int i=head[u];i;i=edge[i].next){ if(vis[edge[i].to]||edge[i].to==fa) continue; int to=edge[i].to; find_root(to,u); son[u]+=son[to]; res=max(res,son[to]); } res=max(res,sz-son[u]); if(res<now_size) now_size=res,root=u; } int a[10007]; //临时储存路径值 int tot; void get_dis(int u,int fa){ //计算d数组 d[i]表示i点距离当前根节点的距离 a[++tot]=d[u]; for(int i=head[u];i;i=edge[i].next){ if(vis[edge[i].to]||edge[i].to==fa) continue; int to=edge[i].to; d[to]=d[u]+edge[i].v; get_dis(to,u); } } int solve(int u,int dis){ //找符合情况的个数 d[u]=dis; tot=0; get_dis(u,u); sort(a+1,a+1+tot); int l=1; int r=tot; int res=0; for(;l<r;++l){ while(l<r&&a[l]+a[r]>k) --r; if(l<r) res+=(r-l); } return res; } void dfs(int u){ //分治 vis[u]=1; ans+=solve(u,0); int totsz=sz; for(int i=head[u];i;i=edge[i].next){ if(vis[edge[i].to]) continue; int to=edge[i].to; ans-=solve(to,edge[i].v); //容斥思想 now_size=inf; root=0; sz=son[to]>son[u]?totsz-son[u]:son[to]; find_root(to,0); dfs(root); } } int main(){ ios::sync_with_stdio(false); while(cin>>n>>k){ if(!n&&!k) break; init(); for(int i=1;i<n;i++){ int from,to,val; cin>>from>>to>>val; add(from,to,val); add(to,from,val); } now_size=inf,sz=n,root=0; find_root(1,0); //找重心 dfs(root); cout<<ans<<endl; } return 0; }