CRB and His Birthday
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 430 Accepted Submission(s): 237
Problem Description
Today is CRB's birthday. His mom decided to buy many presents for her lovely son.
She went to the nearest shop with M Won(currency unit).
At the shop, there are N kinds of presents.
It costs W Won to buy one present of i-th kind. (So it costs k × W Won to buy k of them.)
But as the counter of the shop is her friend, the counter will give Ai × x + Bi candies if she buys x(x>0) presents of i-th kind.
She wants to receive maximum candies. Your task is to help her.
1 ≤ T ≤ 20
1 ≤ M ≤ 2000
1 ≤ N ≤ 1000
0 ≤ Ai, Bi ≤ 2000
1 ≤ W ≤ 2000
She went to the nearest shop with M Won(currency unit).
At the shop, there are N kinds of presents.
It costs W Won to buy one present of i-th kind. (So it costs k × W Won to buy k of them.)
But as the counter of the shop is her friend, the counter will give Ai × x + Bi candies if she buys x(x>0) presents of i-th kind.
She wants to receive maximum candies. Your task is to help her.
1 ≤ T ≤ 20
1 ≤ M ≤ 2000
1 ≤ N ≤ 1000
0 ≤ Ai, Bi ≤ 2000
1 ≤ W ≤ 2000
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers M and N.
Then N lines follow, i-th line contains three space separated integers W, Ai and Bi.
The first line contains two integers M and N.
Then N lines follow, i-th line contains three space separated integers W, Ai and Bi.
Output
For each test case, output the maximum candies she can gain.
Sample Input
1
100 2
10 2 1
20 1 1
Sample Output
21
Hint
CRB's mom buys 10 presents of first kind, and receives 2 × 10 + 1 = 21 candies.Author
KUT(DPRK)
Source
Recommend
大致三种方法:
1. 01背包+完全背包
先跑一遍01背包,价值为a+b的,然后再按价值为a的完全背包跑。
1 #include<stdio.h> 2 #include<string.h> 3 #include<string> 4 #include<iostream> 5 #include<algorithm> 6 using namespace std; 7 #define N 2005 8 #define M 12 9 10 int n,m; 11 int f[N],w[N],a[N],b[N]; 12 13 int main() 14 { 15 int T;cin>>T; 16 while(T--) 17 { 18 scanf("%d%d",&m,&n); 19 for(int i=1;i<=n;i++) 20 scanf("%d%d%d",&w[i],&a[i],&b[i]); 21 22 memset(f,0,sizeof(f)); 23 24 for(int i=1;i<=n;i++) 25 { 26 for(int j=m;j>=w[i];j--) 27 { 28 f[j]=max(f[j],f[j-w[i]]+a[i]+b[i]); 29 } 30 for(int j=w[i];j<=m;j++) 31 { 32 f[j]=max(f[j],f[j-w[i]]+a[i]); 33 } 34 35 } 36 cout<<f[m]<<endl; 37 } 38 return 0; 39 }
2. 完全背包的思路。每次有三种选择方案,1不选第i件物品,2选一个第2件物品,3选2个以上的第二件物品。
用一个辅助数组g记录上一行(上一个i)的最大糖果数的值,因为完全背包空间是从小到大的,所以同一个i后面的空间会用到前面的的值,这也就是完全背包的内涵,但是用了辅助数组g,记录上一行的状态,就保证使用a+b不会用到前面的值。
转移方程:f[j]=max3(f[j], f[j-w[i]]+a[i], g[j-w[i]]+a[i]+b[i]);
1 #include<stdio.h> 2 #include<string.h> 3 #include<string> 4 #include<iostream> 5 #include<algorithm> 6 using namespace std; 7 #define N 2005 8 #define M 12 9 10 int n,m; 11 int w[N],a[N],b[N]; 12 int f[N];//f[j]表示j元钱可以得到的最大糖果数 13 int g[N];//g[j]表示上一个i,j元可以得到的最大糖果数 14 15 int max3(int a,int b,int c) 16 { 17 return max(a,max(b,c)); 18 } 19 20 int main() 21 { 22 int T;cin>>T; 23 while(T--) 24 { 25 scanf("%d%d",&m,&n); 26 for(int i=1;i<=n;i++) 27 scanf("%d%d%d",&w[i],&a[i],&b[i]); 28 29 memset(f,0,sizeof(f)); 30 memset(g,0,sizeof(g)); 31 32 for(int i=1;i<=n;i++) 33 { 34 for(int j=w[i];j<=m;j++) 35 { 36 f[j]=max3(f[j], f[j-w[i]]+a[i], g[j-w[i]]+a[i]+b[i]); 37 } 38 for(int j=0;j<=m;j++) 39 { 40 g[j]=f[j]; 41 } 42 } 43 cout<<f[m]<<endl; 44 } 45 return 0; 46 }
3. 还是完全背包的思路,用dp[i][j][0]表示不取第i件物品,花费j得到的最大收益,dp[i][j][1]表示取第i件物品,花费j得到的最大收益,最终的结果就是max(dp[i][j][0],dp[i][j][1])。每次对于物品i,先得出不取它能得到的最大收益,然后再求取它能得到的最大收益。
#include <iostream> #include <cstring> #include <cstdio> using namespace std; const int N = 2005; int dp[N][N][2]; int main () { int t;cin>>t; while ( t-- ) { int m, n; scanf("%d%d", &m, &n); memset( dp, 0, sizeof(dp) ); for ( int i = 1; i <= n; i++ ) { int w, a, b; scanf("%d%d%d", &w, &a, &b); for ( int j = 0; j <= m; j++ ) { dp[i][j][0] = max( dp[i-1][j][0], dp[i-1][j][1] ); } for ( int j = w; j <= m; j++ ) { dp[i][j][1] = max( dp[i][j - w][1] + a, dp[i][j - w][0] + a + b ); } } printf("%d ", max( dp[n][m][0], dp[n][m][1] )); } return 0; }
第一位空间可以压缩,把声明改成 int dp[N][2];最后结果改成max(dp[m][0],dp[m][1]).
中间关键代码换成
for ( int j = 0; j <= m; j++ ) { dp[i][j][0] = max( dp[i-1][j][0], dp[i-1][j][1] ); } for ( int j = w; j <= m; j++ ) { dp[i][j][1] = max( dp[i][j - w][1] + a, dp[i][j - w][0] + a + b ); }