zoukankan      html  css  js  c++  java
  • python库skimage 实现图像直方图全局均衡化、局部均衡化

    函数

    from skimage import exposure
    from skimage.morphology import disk
    from skimage.filters import rank
    # Global equalize
    img_rescale = exposure.equalize_hist(img)
    
    # Local Equalization
    selem = disk(30)
    img_eq = rank.equalize(img, selem=selem)
    

    实验:低对比度图像全局均衡化和局部均衡化

    """
    ============================
    Local Histogram Equalization
    ============================
    
    This example enhances an image with low contrast, using a method called *local
    histogram equalization*, which spreads out the most frequent intensity values
    in an image.
    
    The equalized image has a roughly linear cumulative distribution function
    for each pixel neighborhood.
    
    The local version of the histogram equalization emphasized every local
    graylevel variations.
    
    """
    import numpy as np
    import matplotlib
    import matplotlib.pyplot as plt
    
    from skimage import data
    from skimage.util.dtype import dtype_range
    from skimage.util import img_as_ubyte
    from skimage import exposure
    from skimage.morphology import disk
    from skimage.filters import rank
    
    
    matplotlib.rcParams['font.size'] = 9
    
    
    def plot_img_and_hist(image, axes, bins=256):
        """Plot an image along with its histogram and cumulative histogram.
    
        """
        ax_img, ax_hist = axes
        # Make and return a second axes that shares the x-axis. 
        # The new axes will overlay ax (or the current axes if ax is None), and its ticks will be on the right.
        ax_cdf = ax_hist.twinx()
    
        # Display image
        ax_img.imshow(image, cmap=plt.cm.gray)
        ax_img.set_axis_off()
    
        # Display histogram
        ax_hist.hist(image.ravel(), bins=bins)
        # Change the ScalarFormatter used by default for linear axes.
        ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0))
        ax_hist.set_xlabel('Pixel intensity')
    
        xmin, xmax = dtype_range[image.dtype.type]
        ax_hist.set_xlim(xmin, xmax)
    
        # Display cumulative distribution
        img_cdf, bins = exposure.cumulative_distribution(image, bins)
        ax_cdf.plot(bins, img_cdf, 'r')
    
        return ax_img, ax_hist, ax_cdf
    
    
    # Load an example image
    img = img_as_ubyte(data.moon())
    
    # Global equalize
    img_rescale = exposure.equalize_hist(img)
    
    # Equalization
    selem = disk(30)
    img_eq = rank.equalize(img, selem=selem)
    
    
    # Display results
    fig = plt.figure(figsize=(8, 5))
    axes = np.zeros((2, 3), dtype=np.object)
    axes[0, 0] = plt.subplot(2, 3, 1)
    axes[0, 1] = plt.subplot(2, 3, 2, sharex=axes[0, 0], sharey=axes[0, 0])
    axes[0, 2] = plt.subplot(2, 3, 3, sharex=axes[0, 0], sharey=axes[0, 0])
    axes[1, 0] = plt.subplot(2, 3, 4)
    axes[1, 1] = plt.subplot(2, 3, 5)
    axes[1, 2] = plt.subplot(2, 3, 6)
    
    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0])
    ax_img.set_title('Low contrast image')
    ax_hist.set_ylabel('Number of pixels')
    
    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[:, 1])
    ax_img.set_title('Global equalise')
    
    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[:, 2])
    ax_img.set_title('Local equalize')
    ax_cdf.set_ylabel('Fraction of total intensity')
    
    
    # prevent overlap of y-axis labels
    fig.tight_layout()
    plt.show()
    

    实验结果

    实验结果

  • 相关阅读:
    Cocos2dx-lua开发之c++绑定到lua
    SCOPE_IDENTITY和@@IDENTITY[转]
    c#List结合IEqualityComparer求交集
    K:java中正则表达式的使用说明及其举例
    K:常见的正则表达式
    K:正则表达式之基础简介
    Q:javax.comm 2.0 windows下Eclipse的配置
    Q:同时安装了python2和python3的电脑下pip的使用
    K:java 断言 assert 初步使用:断言开启、断言使用
    请描述一下 cookies,sessionStorage 和 localStorage 的区别
  • 原文地址:https://www.cnblogs.com/wojianxin/p/12642859.html
Copyright © 2011-2022 走看看