zoukankan      html  css  js  c++  java
  • 信息、熵、信息增益

    关于对信息、熵、信息增益是信息论里的概念,是对数据处理的量化,这几个概念主要是在决策树里用到的概念,因为在利用特征来分类的时候会对特征选取顺序的选择,这几个概念比较抽象,我也花了好长时间去理解(自己认为的理解),废话不多说,接下来开始对这几个概念解释,防止自己忘记的同时,望对其他人有个借鉴的作用,如有错误还请指出。

    1、信息

    这个是熵和信息增益的基础概念,我觉得对于这个概念的理解更应该把他认为是一用名称,就比如‘鸡‘(加引号意思是说这个是名称)是用来修饰鸡(没加引号是说存在的动物即鸡),‘狗’是用来修饰狗的,但是假如在鸡还未被命名为'鸡'的时候,鸡被命名为‘狗’,狗未被命名为‘狗’的时候,狗被命名为'鸡',那么现在我们看到狗就会称其为‘鸡’,见到鸡的话会称其为‘鸡’,同理,信息应该是对一个抽象事物的命名,无论用不用‘信息’来命名这种抽象事物,或者用其他名称来命名这种抽象事物,这种抽象事物是客观存在的。

    引用香农的话,信息是用来消除随机不确定性的东西,当然这句话虽然经典,但是还是很难去搞明白这种东西到底是个什么样,可能在不同的地方来说,指的东西又不一样,从数学的角度来说可能更加清楚一些,数学本来就是建造在悬崖之上的一种理论,一种抽象的理论,利用抽象来解释抽象可能更加恰当,同时也是在机器学习决策树中用的定义,如果带分类的事物集合可以划分为多个类别当中,则某个类(xi)的信息定义如下:

                              

     

    I(x)用来表示随机变量的信息,p(xi)指是当xi发生时的概率,这里说一下随机变量的概念,随机变量时概率论中的概念,是从样本空间到实数集的一个映射,样本空间是指所有随机事件发生的结果的并集,比如当你抛硬币的时候,会发生两个结果,正面或反面,而随机事件在这里可以是,硬币是正面;硬币是反面;两个随机事件,而{正面,反面}这个集合便是样本空间,但是在数学中不会说用‘正面’、‘反面’这样的词语来作为数学运算的介质,而是用0表示反面,用1表示正面,而“正面->1”,"反面->0"这样的映射便为随机变量,即类似一个数学函数。

    2、熵

    既然信息已经说完,熵说起来就不会那么的抽象,更多的可能是概率论的定义,熵是约翰.冯.诺依曼建议使用的命名(当然是英文),最初原因是因为大家都不知道它是什么意思,在信息论和概率论中熵是对随机变量不确定性的度量,与上边联系起来,熵便是信息的期望值,可以记作:

                              

     

     可以这样理解: 是对信息量的按概率的加权平均值。

    熵只依赖X的分布,和X的取值没有关系,熵是用来度量不确定性,当熵越大,概率说X=xi的不确定性越大,反之越小,在机器学期中分类中说,熵越大即这个类别的不确定性更大,反之越小,当随机变量的取值为两个时,熵随概率的变化曲线如下图:

        

                    

    当p=0或p=1时,H(p)=0,随机变量完全没有不确定性,当p=0.5时,H(p)=1,此时随机变量的不确定性最大

    条件熵

    条件熵是用来解释信息增益而引入的概念,概率定义:随机变量X在给定条件下随机变量Y的条件熵,对定义描述为:X给定条件下Y的条件干率分布的熵对X的数学期望,在机器学习中为选定某个特征后的熵,公式如下:

         

    这里可能会有疑惑,这个公式是对条件概率熵求期望,但是上边说是选定某个特征的熵,没错,是选定某个特征的熵,因为一个特征可以将待分类的事物集合分为多类,即一个特征对应着多个类别,因此在此的多个分类即为X的取值。

    交叉熵

    其用来衡量在给定的真实分布下,使用非真实分布所指定的策略消除系统的不确定性所需要付出的努力的大小。

    相对熵

    其用来衡量两个取值为正的函数或概率分布之间的差异。

    3、信息增益

    信息增益在决策树算法中是用来选择特征的指标,信息增益越大,则这个特征的选择性越好,在概率中定义为:待分类的集合的熵和选定某个特征的条件熵之差(这里只的是经验熵或经验条件熵,由于真正的熵并不知道,是根据样本计算出来的),公式如下:

                    

     

    注意:这里不要理解偏差,因为上边说了熵是类别的,但是在这里又说是集合的熵,没区别,因为在计算熵的时候是根据各个类别对应的值求期望来等到熵

    4、信息增益算法(举例,摘自统计学习算法)

    训练数据集合D,|D|为样本容量,即样本的个数(D中元素个数),设有K个类Ck来表示,|Ck|为Ci的样本个数,|Ck|之和为|D|,k=1,2.....,根据特征A将D划分为n个子集D1,D2.....Dn,|Di|为Di的样本个数,|Di|之和为|D|,i=1,2,....,记Di中属于Ck的样本集合为Dik,即交集,|Dik|为Dik的样本个数,算法如下:

    输入:D,A

    输出:信息增益g(D,A)

    (1)D的经验熵H(D)      

     

    此处的概率计算是根据古典概率计算,由于训练数据集总个数为|D|,某个分类的个数为|Ck|,在某个分类的概率,或说随机变量取某值的概率为:|Ck|/|D|

    (2)选定A的经验条件熵H(D|A)

    此处的概率计算同上,由于|Di|是选定特征的某个分类的样本个数,则|Di|/|D|,可以说为在选定特征某个分类的概率,后边的求和可以理解为在选定特征的某个类别下的条件概率的熵,即训练集为Di,交集Dik可以理解在Di条件下某个分类的样本个数,即k为某个分类,就是缩小训练集为Di的熵

    (3)信息增益

           

  • 相关阅读:
    # bootstrap Grid System 柵格系统中“移动优先”的一个小体现[bootstrap ]
    ENGLISH HANDWRITING
    #PHP 类的多继承实现之 traits.md
    #linux vscode 保存总提示“Retry as sudo”
    #【php留存问题-2020年6月19日】,手动为数组添加一个间隔元素,再遍历的时候,提示索引为空
    #Linux 下 Xampp的安装与Hello World
    # 详细了解HTML5中的form表单
    # Promise的简单理解和基本使用
    #简单理解回调函数
    Java中几种常见的设计模式--工厂设计模式
  • 原文地址:https://www.cnblogs.com/wqbin/p/11063188.html
Copyright © 2011-2022 走看看