zoukankan      html  css  js  c++  java
  • HIVE 必知必会

    hive:
    基于hadoop,数据仓库软件,用作OLAP

    OLAP:online analyze process 在线分析处理
    OLTP:online transaction process 在线事务处理

    事务:
    ACID

    A:atomic 原子性
    C: consistent 一致性
    I:isolation 隔离性
    D: durability 持久性

    1读未提交
      脏读 //事务一写入数据,事务二进行读取,事务一进行回滚
    2读已提交
      不可重复读 //事务一写入数据并提交,事务二读取,事务一进行update操作,事务二读取的数据不一致
    4可重复读
      幻读 //在mysql中见不到
    8串行化

    默认事务隔离级别 => mysql 4
    => oracle 2 , oracle没有4


    RDBMS:关系型数据库管理系统

    范式:
    第一范式:无重复的列,一列只能包含一个字段
    第二范式:主键约束,一行只能被唯一标识
    第三范式:非主键字段要严格依赖于主键字段


    --------------------------------------------------
    id info name age classroom aircondition fans chair
    --------------------------------------------------
    1 {tom,20,married}
    --------------------------------------------------
    1 {}
    --------------------------------------------------


    Hive数据仓库:反范式设计,允许甚至推荐冗余


    安装centos版本的mysql:
    ===================================
    1、将hive相关软件下的文件或文件夹均拷贝到/home/centos下

      

    2、先安装centos版的mysql
      1)安装mysql的仓库镜像
      sudo rpm -ivh mysql-community-release-el7-5.noarch.rpm

      2)安装mysql
      cd mysql
      sudo yum -y localinstall *

      3)启动并修改配置mysql密码
      centos> systemctl start mysqld
      centos> systemctl enable mysqld
      centos> mysql -uroot //进入mysql中

      mysql> update mysql.user set password=password('root'); //设置mysql密码为root

      mysql> flush privileges; //刷新权限列表

      4)退出mysql并重新进入
      mysql> exit
      centos> mysql -uroot -proot

    3、安装hive:
      1)解压
      tar -xzvf apache-hive-2.1.1-bin.tar.gz -C /soft/

      2)符号链接
      cd /soft/
      ln -s apache-hive-2.1.1-bin/ hive

      3)环境变量
      # hive环境变量
      export HIVE_HOME=/soft/hive
      export PATH=$PATH:$HIVE_HOME/bin

      4)生效环境变量
      source /etc/profile

      5)修改hive配置文件:

        1.重命名所有的template文件后缀去掉
        rename '.template' '' *.template

        2.修改hive-env.sh文件,添加
        HADOOP_HOME=/soft/hadoop

        3.重命名hive-default.xml文件为hive-site.xml
        mv hive-default.xml hive-site.xml

        4.修改hive-site.xml //替换自己的hive-site.xml
          4.5、修改hive-site.xml中的${system:user.name}和${system:java.io.tmpdir} //可选
          sed -i 's@${system:user.name}@centos@g' hive-site.xml
          sed -i 's@${system:java.io.tmpdir}@/home/centos/hive@g' hive-site.xml

        5.拷贝mysql驱动到hive下
        cp ~/mysql-connector-java-5.1.44.jar /soft/hive/lib/

        6.在mysql中创建数据库hive
        create database hive;

        7.初始化元数据库
        schematool -initSchema -dbType mysql

    4、体验hive
        输入 hive 进入命令行

    ==========================================================hive使用==============================================================

    启动hive的顺序
      1、启动zk
      2、启动hadoop(hdfs+MR)
      3、启动hive


    hive数据类型:
      int
      string
      bigint

      array => ['jenny','marry'] //array<String>

      colmun, fruit
      struct => {1, 'apple'} //事先定义好字段名称 struct<column int, fruit string>

      int: string
      map => {1:'apple'} //事先定义好k-v类型 map<int,string>


      unoin => {'tom':['jenny','marry']} //联合类型,此例子是map和array的嵌套

    hive建表指定分隔符:
    ==========================================================================
    create table users2 (id int, name string, age int) row format delimited fields terminated by ' ';

    row format delimited+
    分隔符类型:
    fields terminated by ' '     //字段分隔符
    collection items terminated by ','   //array类型成员分隔符
    map keys terminated by ':'
    lines terminated by ' '   //行分隔符,必须放在最后

    hive插入数据不是使用insert,而是load:
    =======================================================================
    批量插入数据

    1、先定义好表结构
      create table employee(name string, work_place array<string>, sex_age struct<sex:string, age:int> , score map<string, int>, depart_title map<string, string>) row format delimited fields terminated by '|' collection items terminated by ',' map keys terminated by ':' lines terminated by ' ' stored as textfile;

    2、准备数据。数据格式要和表结构对应 employee.txt
      Michael|Montreal,Toronto|Male,30|DB:80|Product:Developer
      Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead
      Shelley|New York|Female,27|Python:80|Test:Lead,COE:Architect
      Lucy|Vancouver|Female,57|Sales:89,HR:94|Sales:Lead

    3、空表中使用load命令加载数据
      load data local inpath '/home/centos/employee.txt' into table employee;


    4、取出所有的成员
      select name ,work_place[0] from employee; array获取
      select name ,sex_age.sex from employee; 结构体获取
      select name, score['python'] from employee; map成员获取

    插入复杂类型数据insert
    ===============================

    1.设置显示表头
      set hive.cli.print.header=true; //设置显示表头,临时修改,想要永久修改需要修改配置文件

    2.插入复杂类型使用转储:insert xxx select xxx

    3.通过select语句构造某类型

      select array('tom','tomas','tomson') ; //通过select语句构造出array类型
      insert into employee(name,work_place) select 'tom', array('beijing','shanghai','guangzhou') ;


      select map('bigdata',100); //通过select语句构造出map类型
      insert into employee(name,score) select 'tomas', map('bigdata',100);

      select struct('male',10);
      select named_struct('sex','male','age',10); //通过select语句构造出struct类型
      insert into employee(name,sex_age) select 'tomson',named_struct('sex','male','age',10);

    load命令详解:
    =================================
    1、load本地数据
      load data local inpath '/home/centos/employee.txt' into table employee; //相当于上传或者复制,源文件不变

    2、load hdfs数据
      load data inpath '/duowan_user.txt' into table duowan; //相当于移动

    3、load本地数据 + 覆盖原始数据
      load data local inpath '/home/centos/employee.txt' overwrite into table employee;

    4、load hdfs数据 + 覆盖原始数据
      load data inpath '/duowan_user.txt' overwrite into table duowan;

    duowan数据处理:
    ====================================
    //创建表
      create table duowan(id int, name string, pass string, mail string, nickname string) row format delimited fields terminated by ' ' lines terminated by ' ' stored as textfile;


    //加载数据
      load data inpath '/duowan_user.txt' into table duowan;


    //开始执行
      select pass , count(*) as count from duowan group by pass order by count desc limit 10;

    //设置reduce个数
      set mapreduce.job.reduces=2;

    hiveserver2

    //hive的jdbc接口,用户可以连接此端口来连接hive服务器
    =======================================

    hive jdbc //端口10000
    web页面 //10002

    通过jdbc连接hiveserver2

    org.apache.hive.jdbc.HiveDriver //jdbc驱动类

    问题:java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException:User: centos is not allowed to impersonate anonymous

    解决:hive.server2.enable.doAs=false //hive-site.xml配置文件禁用连接验证

    //不再使用hive直接使用hiveserver2//再在s201新界面输入   beeline -u jdbc:hive2://localhost:10000

    如何使用新hive端口在ide上
    1、启动hiveserver2 服务端
      hiveserver2

    2、编程
    //查询数据使用ide

     1 public static void main(String[] args) throws Exception {
     2 Class.forName("org.apache.hive.jdbc.HiveDriver");
     3 String url = "jdbc:hive2://192.168.23.101:10000/big12";
     4 Connection conn = DriverManager.getConnection(url);
     5 Statement st = conn.createStatement();
     6 ResultSet rs = st.executeQuery("select * from duowan limit 20");
     7 while(rs.next()){
     8 int id = rs.getInt(1);
     9 String name = rs.getString(2);
    10 String pass = rs.getString(3);
    11 String mail = rs.getString(4);
    12 String nickname = rs.getString(5);
    13 System.out.println(id + "/" + name + "/" + pass + "/" + mail + "/" + nickname);
    14 }
    15 rs.close();
    16 st.close();
    17 conn.close();
    18 }
    19 
    20 //插入数据
    21 @Test
    22 public void testInsert() throws Exception{
    23 Class.forName("org.apache.hive.jdbc.HiveDriver");
    24 String url = "jdbc:hive2://192.168.23.101:10000/big12";
    25 Connection conn = DriverManager.getConnection(url);
    26 Statement st = conn.createStatement();
    27 boolean b = st.execute("insert into users values(2,'tomas',30)");
    28 if(b){
    29 System.out.println("ok");
    30 }
    31 }

    3、使用新一代客户端beeline连接hiveserer2
      beeline -u jdbc:hive2://localhost:10000

      

    4.问题解决:
      问题:host 192.168.23.1 is not allowed to connect to mysql server

      解决:在mysql中输入
      grant all privileges on *.* to 'root'@'192.168.23.1' identified by 'root';
      flush privileges;

    使用beeline进行操作:
    ====================================
    1、join
    1)customer
      create table customers(id int, name string, age int) row format delimited fields terminated by ' ';
    2)orders
      create table orders(oid int, oname string, oprice float, uid int) row format delimited fields terminated by ' ';

    3)创建并加载数据
      load data local inpath '' into table xxx;

    4)使用join:
    //内连接
      select a.id, a.name, b.oname, b.oprice from customers a inner join orders b on a.id=b.uid;
    //左外连接
      select a.id, a.name, b.oname, b.oprice from customers a left outer join orders b on a.id=b.uid;
    //右外连接
      select a.id, a.name, b.oname, b.oprice from customers a right outer join orders b on a.id=b.uid;
    //全外连接
      select a.id, a.name, b.oname, b.oprice from customers a full outer join orders b on a.id=b.uid;

    2、wordcount

    1)array => collection items terminated by ' ' => explode()
      explode => array

      1.创建表wc
      create table wc(line array<string>) row format delimited collection items terminated by ' ';

      2.加载数据
      load xxx

      3.编写sql语句
      select word, count(*) as count from (select explode(line) word from wc ) a group by word order by count desc;


    2)line string => split()
      split => select split('hello world', ' ') => ["hello","world"]

      1.创建表wc2
      create table wc2(line string) row format delimited;

      2.加载数据
      load xxx

      3.编写sql语句
      select word , count(*) as count from (select explode(split(line,' ')) as word from wc2) a group by word order by count desc;

    3、最高气温统计

      substr(line,16,4) => 1901
      substr(line,88,5) => +0010

      cast(temp as int);

    1)创建temp表
      create table temp(line string) ;

    2)加载temp数据到表中
      load data xxx

    3)select year, max(temp) from (select substr(line,16,4) as year, cast(substr(line,88,5) as int) as temp from temp) a where temp != 9999 group by year;

    本地模式:
    ================================================================
      让hive自动使用hadoop的本地模式运行作业,提升处理性能

      set hive.exec.mode.local.auto=true;

      hive:
      !sh ls -l /home/centos => 在hive命令行执行shell语句

      dfs -ls / ;

    alter 修改

    ================================================================

      alter table wc rename to wc3; //修改表名

      alter table user_par add partition(province='beijing',city='beijing');//添加分区

      alter table customers drop column wife; //删除列,不能用!!!!!
      alter table customers replace columns(wife1 string, wife2 string, wife3 string); //替换所有列
      alter table customers change column id no string; //将id列改名为no,类型为string

    hive分区:
    =========================================
    partition,是一个字段,是文件夹

    前提:在hive进行where子句查询的时候,会将条件语句和全表进行比对,搜索出所需的数据,性能极差:避免全表扫描


    0:建立user_par
    create table user_par(id int, name string, age int) partitioned by(province string, city string)row format delimited fields terminated by ' ';

    1.1、添加分区
    alter table user_par add partition(province='beijing',city='beijing');
    1.2、将数据加载到指定分区(分区可以不存在)
    load data local inpath '/home/centos/customers.txt' into table user_par partition (province='shanxi',city='taiyuan');
    1.3、将表清空
    truncate table user_par;

    or

    1.1、插入数据动态指定分区
    //设置动态分区非严格模式,无需指定静态分区
    set hive.exec.dynamic.partition.mode=nonstrict;
    insert into user_par partition(province,city) select * from user_nopar;

    2、建立user_nopar
    create table user_nopar(id int, name string, age int, province string, city string) row format delimited fields terminated by ' ';

    SQL => struct query language

    HQL => hive query language 类sql,和sql语句差别不大

    no sql => not only sql 不仅仅是sql,和sql语句差距较大


    HQL语句和MR执行过程的对应

    select

    ==============================================join=====partition=====bucket==========================================================================

    join:

    ========================================================================
    select a.id, a.name, b.orderno, b.oprice from customers a inner join orders b on a.id=b.cid;

    a inner join b //返回行数 a ∩ b

    a left [outer] join b //返回行数 a

    a right [outer] join b //返回行数 b

    a full [outer] join b //返回行数 a+b - (a ∩ b)

    a cross join b //返回行数 a * b

     

     

    特殊join:
    ====================================================================================
    1.map join

    小表+大表 => 将小表加入到分布式缓存,通过迭代大表所有数据进行处理

    在老版的hive中(0.7)之前,所有的join操作都是在reduce端执行的(reduce 端join)
    想要进行map端join,需要进行以下操作
    SET hive.auto.convert.join=true;
    声明暗示 a join b , a小表,b大表
    /*+ mapjoin(小表) */
    SELECT /*+ MAPJOIN(a) */ a.id, a.name, b.orderno, b.oprice from customers a inner join orders b on a.id=b.cid;


    在新版hive中,如果想要进行map端join

    jdbc:hive2://> SET hive.auto.convert.join=true; //设置自动转换成map端join
    jdbc:hive2://> SET hive.mapjoin.smalltable.filesize=600000000; //设置map端join中小表的最大值

    2.common join
    即reduce端join
      1)、声明暗示,指定大表
      /*+ STREAMTABLE(大表) */

    2)、将大表放在右侧

     

     

    测试:customers和orders

      //不写任何暗示,观察是map端join还是reduce join
      SELECT a.no, a.name, b.oname, b.oprice from customers a inner join orders b on a.no=b.uid;

    //写暗示,观察效果
    SELECT /*+ MAPJOIN(a) */ a.no, a.name, b.oname, b.oprice from customers a inner join orders b on a.no=b.uid;

    //将自动转换map join 设置成false
    SET hive.auto.convert.join=false;

    //写reduce端join的暗示,观察结果
    SELECT /*+ STREAMTABLE(a) */ a.no, a.name, b.oname, b.oprice from customers a inner join orders b on a.no=b.uid;

    partition:
    =============================================================================== 
    文件夹形式存在,为了避免查询时的全表扫描

    0.1  create table user(id int, name string, age int);

    0.2  create table user2(id int, name string, age int) partitioned by (province string, city string);


    1、手动创建分区
      alter table user add partition(province='beijing',city='beijing');

    2、load数据到分区
      load data local inpath '' into table user partition(province='beijing',city='beijing');

    3、插入数据动态创建分区
      //设置动态分区非严格模式
      set hive.exec.dynamic.partition.mode=nonstrict
      insert into user2 partition(province, city) select * from user;

      注意:在动态插入分区字段时注意,字段顺序必须要和分区顺序保持一致,和字段名称无关

    4、删除分区数据
      alter table user_par2 drop partition(province='chengdu');

    5、insert数据到分区表
      insert into user_par2 partition(province='USA', city='NewYork') select 10,'jerry',30;

    6、查看指定表的分区列表:
      show partitions user_par2;

    7、如何创建分区
      1)以日期或时间进行分区 比如year, month, and day
      2)以位置进行分区 比如Use country, territory, state, and city
      3)以业务逻辑进行分区

    bucket:桶表
    ==================================================================
    新型数据结构,以‘’文件段‘’的形式在分区表内部按照指定字段进行分隔---把分区表继续分成更小的文件 根据hashcode随机分配

    重要特性:优化join的速度,避免全区扫描

    //创建分区分桶表   分区在前分桶在后

      create table user_bucket(id int, name string, age int) CLUSTERED BY (id) INTO 2 BUCKETS row format delimited fields terminated by ' ';

    //在桶表中转储数据
      insert into user_bucket select id, name , age from user_par2;

    //查看hdfs中桶表的数据结构-------分区下又分成更小的文件

    //将桶表和分区表一同使用建立新表user_new, 分区在前
      create table user_new(id int, name string, age int) partitioned by (province string, city string) CLUSTERED BY (id) INTO 2 BUCKETS row format delimited fields terminated by ' ';

    //查看hdfs中桶表的数据结构-------探讨

        step0:create table user_new(id int, name string, age int) partitioned by (province string, city string) CLUSTERED BY (id) INTO 2 BUCKETS row format delimited fields terminated by ' ';

        step1:load data local inpath '/home/centos/customers.txt' into table user_new partition(province='beijing',city='beijing');

        step2:...查看hdfs...发现在(province='beijing',city='beijing')partition文件夹下只有一个文件。。。并没有自动分桶

        结论:load并不会修改表中的数据结构,在桶表中的体现,就是没有将数据进行分段

    //insert 数据
      insert into user_new partition(province='USA', city='NewYork') select 10,'jerry',30;

    //如何指定分桶字段
        通过join字段进行桶字段的确定,在以下场景中分桶字段a => no , b => uid

    内部表&外部表

    =======================================================
    内部表:
      删除表 => 删除元数据,删除真实数据
      MANAGED_TABLE 也叫托管表
      默认表类型


    外部表:
      删除表 => 只删除元数据,不删除真实数据
      场景:为了防止drop或者truncate表的时候数据丢失的问题
      external table

    create external table user_external as select * from user_par;

    drop  table user_externa;

    打开hdfs。。发现数据文件还在

     

     


    ctas:
    =====================================================================
    create table user_par2 like user_par; //创建user_par2,与user_par表结构一致,但是没有数据

    create table user_par3 as select * from user_par; //创建user_par2,与user_par完全一致,包括数据
    //但是分区会被变为字段

    查看函数的扩展信息:

    =====================================================================

    desc function extended xxxxxxx;
       eg:desc function extended format_number;

    时间函数:
    =====================================================================
    select current_database() //当前数据库。。。。无语

    select current_date() //当前日期

    select current_timestamp() //当前时间戳,精确到毫秒

    select date_format( current_timestamp(), 'yyyy-MM-dd HH:mm:ss'); //将时间格式化

    select unix_timestamp(current_date()) //将日期转换成时间戳,精确到秒

    select from_unixtime(153361440000, 'yyyy-MM-dd'); //将时间戳转化成日期

    select datediff('2018-03-01','2018-02-01'); //计算两个指定日期相差多少天


    字符串函数
    =====================================================================
    select split('hello world',' '); => array()

    select substr('hello world', 7); => world

    select substr('hello world', 7,12); => world

    select trim(' world'); => 去掉前后的空格

    format_number()

        //select format_number(1234.345,2); => 1,234.35

      //select format_number(1234.345,'000000.00'); => 001234.35
      //select format_number(1234.345,'########.##'); => 1234.35

    select concat('hello', ' world');    //拼串操作,返回 hello world

    select length('helloworld')         //10

    条件语句
    =====================================================================
    select if( age > 10 ,'old', 'young') from user_par; //相当于三元运算符。
      //第一个表达式成立返回第二个表达式
      //第一个不成立返回第三个表达式

    select case when age<20 then 'young' when age<40 then 'middle' else 'old' end from user_par;

      //小于20,返回young
      //小于40,返回middle

    select case  age when 20 then '20岁' when 40 then '40岁' else '其他岁' end from user_par; 


    排序:

    order by //全排序
    sort by //部分排序
    distribute by //相当于hash分区,但是没有排序
    cluster by //sort by + distribute by

    =============================================================================================
    //建表--- user_order 无分区
      create table user_order(id int, name string, age int, province string, city string) row format delimited fields terminated by ' ';

    //设置reduce个数
      set mapreduce.job.reduces=2;


    order by
    全排序 //强制一个reduce,在真实使用中,需要加limit限制。
      truncate table user_order;
      insert into user_order select * from user_par order by id;

      最后输出文件个数为2 =reduce


    sort by
    部分排序 //在每个reduce中分别排序
      truncate table user_order;

      set mapreduce.job.reduces=2;
      insert into user_order select * from user_par sort by id;

      最后输出文件个数为2 =reduce


    distribute by
    hash分区 // 根据id hash分区 输出文件不排序
      truncate table user_order;

      set mapreduce.job.reduces=2;
      insert into user_order select * from user_par distribute by id;

      最后输出文件个数为1 =强制reduce数


    cluster by = distribute by + sort by
      truncate table user_order;

      set mapreduce.job.reduces=2;
      insert into user_order select * from user_par cluster by id;

     最后输出文件个数为2 =reduce

     

     

    Hive的存储格式
    ================================================================

    行级存储

    textfile:

    sequencefile :二进制的k-v对

      hive-site.xml默认: SET hive.exec.compress.output=true;
                 SET io.seqfile.compression.type=BLOCK;

    列级存储
      rcfile
        先将数据进行横切(4M),成为行组,行组内又纵向切割分为多个字段


      orc
        比rc文件更大的块(256M),优化磁盘的线性读取,通过指定的编码器确定数据类型并优化压缩
        还存储了基本统计数据,比如min,max,sum,count。。。


      parquet
        适用范围更广(在hadoop生态系统中)
        适用于嵌套文件格式

    大小
    create table user_seq(id int, name string, pass string, email string, nickname string) stored as SEQUENCEFILE; x
    create table user_rc(id int, name string, pass string, email string, nickname string) stored as rcfile;
    create table user_orc2(id int, name string, pass string, email string, nickname string) stored as orc tblproperties("orc.compress"="ZLIB");
    create table user_parquet2(id int, name string, pass string, email string, nickname string) stored as parquet tblproperties("parquet.compression"="GZIP"); //NOCOMPRESS、SNAPPY、GZIP


    insert into user_seq select * from user_nopar;
    insert into user_rc select * from user_nopar;
    insert into user_orc2 select * from user_nopar;
    insert into user_parquet2 select * from user_nopar;

    1、比较生成文件大小

    text:136.8 MB
    seq:222.41 MB 性能差
    rc:353.52 KB
    orc:97.4 KB //默认有压缩:ZLIB
    parquet:9.26 MB //默认无压缩:NO ===GZIP==> 62.5 KB

    性能

    select count(*) from user_nopar; //3.649
    select count(*) from user_seq; //25.368 性能差
    select count(*) from user_rc; //2.391
    select count(*) from user_orc2; //2.334
    select count(*) from user_parquet2; //3.339 √

    本地模式

    ==============================================================================

    //设置hive自动使用本地模式
    SET hive.exec.mode.local.auto=true;
    //输入文件大小低于此值会进入本地模式
    SET hive.exec.mode.local.auto.inputbytes.max=500000000;
    //输入文件个数低于此值会进入本地模式
    SET hive.exec.mode.local.auto.input.files.max=5;

  • 相关阅读:
    Visualizing Concurrency in Go · divan's blog
    Trac常用插件描述!
    分布式 OLTP 数据库
    【SDCC讲师专访】PingCAP联合创始人兼CEO刘奇:好的产品应开源,不闭门造车-CSDN.NET
    XiaoMi/themis: Themis provides cross-row/cross-table transaction on HBase based on google's percolator.
    TiDB首页、文档和下载
    TeamGantt vs JIRA 2016 Comparison | FinancesOnline
    HandlerInterceptor拦截实现对PathVariable变量的读取
    大叔来说说Markdown的使用
    springcloud~配置中心实例搭建
  • 原文地址:https://www.cnblogs.com/wqbin/p/9460079.html
Copyright © 2011-2022 走看看