题意
2e5的数组,q个操作
1.将(a[x])改为y
2.求下标l到r内所有的(a[i])通过加法不能构成的最小的值
思路
通过二操作可以知道需要提取l到r内的值及其数量,而提取下标为l到r内的元素是一定要用主席树的
而用树状数组套上主席树即可实现修改操作
剩下需要解决的就是二操作:
首先只有有至少一个1,才能构成1
假设已经可以构成[1,x],设当前区间内值为[1,x+1]的和为sum
那显然我们就能构成[1,sum]了,如果sum==x,那么答案就是x+1
这个过程可以直接暴力,最坏情况下当前区间里的数是{1,2,3,5,8,13...},在第27项就到到2e5了,所以最多跑27次
那么复杂度O((27qlog^2n))
这题其实比较友好,不需要离散化,也不需要优化空间,赞
比赛的时候其实也很可写,可惜
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional>
#define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
using namespace std;
typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL;
typedef pair<ll,int> PIL;
const db eps = 1e-2;
const int mod = 1e9+7;
const int maxn = 2e5+100;
const int maxm = maxn*150;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0);
int n,m;
inline int read(){
int num;
char ch;
while((ch=getchar())<'0' || ch>'9');
num=ch-'0';
while((ch=getchar())>='0' && ch<='9'){
num=num*10+ch-'0';
}
return num;
}
struct qst{
int op;
int x,y;
}prb[maxn];
ll a[maxn];
int totn,tot;
int rrot[maxn];
int ls[maxm],rs[maxm];
ll dat[maxm];
int root[maxn];
inline void insert(int &now, int l, int r, int x, int val){
if(!now)now=++tot;
dat[now]+=val;
if(l==r)return;
int mid = (l+r)>>1;
if(x<=mid)insert(ls[now],l,mid,x,val);
else insert(rs[now],mid+1,r,x,val);
}
int totL,totR;
int L[maxn],R[maxn];
inline ll ask(int l, int r, int k){
if(r==k){
ll ans=0;
for(int i = 1; i <= totL; i++)ans-=dat[L[i]];
for(int i = 1; i <= totR; i++)ans+=dat[R[i]];
return ans;
}
int mid=(l+r)>>1;
if(k<=mid){
for(int i = 1; i <= totL; i++)L[i]=ls[L[i]];
for(int i = 1; i <= totR; i++)R[i]=ls[R[i]];
return ask(l,mid,k);
}
else{
ll ans = 0;
for(int i = 1; i <= totL; i++)ans-=dat[ls[L[i]]];
for(int i = 1; i <= totR; i++)ans+=dat[ls[R[i]]];
for(int i = 1; i <= totL; i++)L[i]=rs[L[i]];
for(int i = 1; i <= totR; i++)R[i]=rs[R[i]];
return ans+ask(mid+1,r,k);
}
}
inline int lowbit(int x){return x&-x;}
int main() {
int q;
scanf("%d %d",&n, &q);
for(int i = 1; i <= n; i++){
a[i]=1ll*read();
}
totn=200000;
for(int i = 1; i <= n; i++){
int t = a[i];
for(int j = i; j <= n; j+=lowbit(j)){
insert(root[j],1,totn,t,a[i]);
}
}
for(int i = 1; i <= q; i++){
prb[i].op=read();prb[i].x=read();prb[i].y=read();
if(prb[i].op==1){
ll t = a[prb[i].x];
int tt = prb[i].y;
a[prb[i].x]=prb[i].y;
for(int j = prb[i].x; j<=n; j+=lowbit(j)){
insert(root[j],1,totn,t,-t);
insert(root[j],1,totn,tt,tt);
}
}
else{
prb[i].x--;
ll now = 1;
ll sum = 0;
while(1){
totL=totR=0;
for(int j = prb[i].x; j; j-=lowbit(j))L[++totL]=root[j];
for(int j = prb[i].y; j; j-=lowbit(j))R[++totR]=root[j];
int t = min(now,200000ll);
ll tmp = ask(1,totn,t);
if(tmp==sum){
printf("%lld
",now);
break;
}
sum=tmp;now=sum+1;
}
}
}
return 0;
}