题意:
q次询问,每次给一个x,问1到x的因数个数的和。
1<=q<=10 ,1<= x<=10^9
1s
思路:
对1~n中的每个数i,i作为i,2i,3i,...的约数,一共作为n/i个数的约数
于是题目就转化为求$displaystyle sum_{i=1}^nlfloor frac{n}{i} floor$
数论分块$O(displaystyle sqrt{n})$解决
代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<stack> #include<queue> #include<deque> #include<set> #include<vector> #include<map> #include<functional> #define fst first #define sc second #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define lc root<<1 #define rc root<<1|1 #define lowbit(x) ((x)&(-x)) using namespace std; typedef double db; typedef long double ldb; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> PI; typedef pair<ll,ll> PLL; const db eps = 1e-6; const int mod = 1e9+7; const int maxn = 2e5+2; const int maxm = 2e6+100; const int inf = 0x3f3f3f3f; const db pi = acos(-1.0); int main() { int T; int n; scanf("%d", &T); while(T--){ scanf("%d", &n); ll ans = 0; for(int l = 1, r; l <= n; l=r+1){ r=n/(n/l); ans+=(r-l+1)*(n/l); } printf("%lld ", ans); } return 0; }