zoukankan      html  css  js  c++  java
  • poj3662 Telephone Lines

    很棒的题目. 简单来说,本题是在无向图上求一条1到N的路径, 使路径上第 K + 1 大的边权尽量小.

    本题答案显然有单调性,支付的钱更多时,合法的升级方案一定包含话费少的方案.

    于是考虑二分.把升级价格不超过 mid 的边的长度设为0, 然后求从 1 到 N 的最短路长度是否不超过 K 即可.

      1 #include <cstdio>
      2 #include <algorithm>
      3 #include <cstring>
      4 #include <queue>
      5 #include <vector>
      6 #include <iostream>
      7 
      8 using namespace std;
      9 typedef pair<int, int> Pa;
     10 const int MAXN = 1e3 + 20;
     11 const int MAXP = 1e4 + 20;
     12 const int MAXL = 1000000 + 20;
     13 
     14 inline int read()
     15 {
     16     int x = 0; char ch = getchar();
     17     while(!isdigit(ch)) ch = getchar();
     18     while(isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
     19     return x;
     20 }
     21 
     22 int N, P, K;
     23 
     24 namespace edges
     25 {
     26     struct edge
     27     {
     28         int from, to, cost;
     29         edge(int u = 0, int v = 0, int c = 0) : from(u), to(v), cost(c) {}
     30 
     31         bool operator <(const edge &rhs) const{
     32             return cost < rhs.cost;
     33         }
     34     }E[MAXP];
     35 
     36     inline void addedge(int u, int v, int c)
     37     {
     38         static int cnt = 1;
     39         E[cnt++] = edge(u, v, c);
     40     }
     41 
     42     inline void init()
     43     {
     44         sort(E + 1, E + P + 1);
     45     }
     46 }
     47 
     48 namespace dij
     49 {
     50     struct edge
     51     {
     52         int to, cost;
     53         edge(int v = 0, int c = 0) : to(v), cost(c) {}
     54     };
     55 
     56     vector<edge> g[MAXN];
     57     int d[MAXN];
     58 
     59     inline void addedge(int u, int v, int c)
     60     {
     61         g[u].push_back(edge(v, c));
     62         g[v].push_back(edge(u, c));
     63     }
     64 
     65     inline void init()
     66     {
     67         for(int i = 0; i <= N; i++)
     68             g[i].clear();
     69     }
     70 
     71     inline bool tension(const int &sml, int &big)
     72     {
     73         return sml < big ? (big = sml, true) : false;
     74     }
     75 
     76     inline int dijkstra(int s, int t)
     77     {
     78         deque<Pa> q;
     79         memset(d, 0x3f, sizeof(d));
     80 
     81         d[s] = 0;
     82         q.push_front(Pa(0, s));
     83 
     84         while(!q.empty())
     85         {
     86             Pa p = q.front(); q.pop_front();
     87             int u = p.second;
     88             if(d[u] < p.first) continue;
     89 
     90             for(int i = 0; i < (int) g[u].size(); i++)
     91             {
     92                 edge e = g[u][i];
     93                 if(tension(d[u] + e.cost, d[e.to]))
     94                 {
     95                     if(e.cost == 1) q.push_back(Pa(d[e.to], e.to));
     96                     else q.push_front(Pa(d[e.to], e.to));
     97                 }
     98             }
     99         }
    100         return d[t];
    101     }
    102 }
    103 
    104 inline bool check(int fare)
    105 {
    106     using namespace edges;
    107 
    108     dij::init();
    109     for(int i = 1; i <= P; i++)
    110     {
    111         edge e = E[i];
    112         dij::addedge(e.from, e.to, e.cost > fare ? 1 : 0);
    113     }
    114 
    115     return dij::dijkstra(1, N) > K ? false : true;
    116 }
    117 
    118 int main()
    119 {
    120 //    freopen("p1948.txt", "r", stdin);
    121     cin>>N>>P>>K;
    122 
    123     int u, v;
    124     for(int i = 1; i <= P; i++)
    125     {
    126         u = read(), v = read();
    127         edges::addedge(u, v, read());
    128     }
    129 
    130     //edges::init();
    131 
    132     int l = 0, r = MAXL;
    133     #define mid (((l) + (r)) >> 1)
    134     while(l < r)
    135     {
    136         if(check(mid)) r = mid;
    137         else l = mid + 1;
    138     }
    139 
    140     if(l == MAXL) cout<<-1<<endl;
    141     else cout<<l<<endl;
    142     return 0;
    143 }

     

  • 相关阅读:
    题解 CF1304E 【1-Trees and Queries】
    题解 P4302 【[SCOI2003]字符串折叠】
    题解 P2070 【刷墙】
    题解 P1278 【单词游戏】
    题解 P1985 【[USACO07OPEN]翻转棋】
    题解 P2642 【双子序列最大和】
    Python面向对象之反射
    Python面向对象之进阶
    Python面向对象之多态、封装
    Python面向对象之继承
  • 原文地址:https://www.cnblogs.com/wsmrxc/p/8994772.html
Copyright © 2011-2022 走看看