zoukankan      html  css  js  c++  java
  • c++ priority_queue应用(重要)

    自定义排序

    重写仿函数

     struct cmp{
         bool operator() ( Node a, Node b ){//默认是less函数
             //返回true时,a的优先级低于b的优先级(a排在b的后面)
             if( a.x== b.x ) return a.y> b.y;      
             return a.x> b.x; }
     };

    struct cmp1{
      bool operator () ( int a , int b ){
        return a > b;
      }
    };
    struct cmp2{
      bool operator ()( int s ,int d ){
        return s<d;
      }
    };
    priority_queue<int> q;//默认是从大到小。大顶堆

    priority_queue<int, vector<int> ,less<int> >q;//从大到小排序。大顶堆

    priority_queue<int, vector<int>, greater<int> >q;//从小到大排序。小顶堆

    priority_queue < int , vector<int> , cmp2 > q;//从大到小。大顶堆

    priority_queue < int , vector<int> , cmp1 > q;//从小到大。大顶堆

    关于priority_queue中元素的比较

      模板申明带3个参数:priority_queue<Type, Container, Functional>,其中Type 为数据类型,Container为保存数据的容器,Functional 为元素比较方式。

      Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector。

    如果把后面2个参数缺省的话,优先队列就是大顶堆(降序)

    347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements.

    Example 1:

    Input: nums = [1,1,1,2,2,3], k = 2
    Output: [1,2]
    

    Example 2:

    Input: nums = [1], k = 1
    Output: [1]

    Note:

    • You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
    • Your algorithm's time complexity must be better than O(n log n), where n is the array's size.
    • It's guaranteed that the answer is unique, in other words the set of the top k frequent elements is unique.
    • You can return the answer in any order
    class Solution {
    public:
        struct cmp{
             bool operator()(pair<int,int>& a,pair<int,int>& b){
                if(a.second >= b.second) return true;
                else return false;
             }
        };
        
        vector<int> topKFrequent(vector<int>& nums, int k) {
            //sort(nums.begin(),nums.end());
            vector<int> res;
            map<int,int> freq2num;
            for(int i=0;i<nums.size();i++){
                freq2num[nums[i]]++;
            }
            //默认大顶堆,我们需要小顶堆
            priority_queue<pair<int,int>,vector<pair<int,int>>,cmp> p;
            for(auto iter=freq2num.begin();iter!=freq2num.end();iter++){
                if(p.size()<k){
                    p.push(*iter);
                }else{
                    if(p.top().second<iter->second){
                        p.pop();
                        p.push(*iter);
                    }
                }
            }
            while(p.size()){
              res.push_back(p.top().first); 
              p.pop();
            }
            return res;
        }
    };
     vector<int> topKFrequent(vector<int>& nums, int k) {
            vector<int> res;
            map<int,int> m;
            for(auto c:nums)
            {
                m[c]++;
            }
         //默认大顶堆,我们选前k个。 priority_queue
    <pair<int,int>> q; //map中iter->first是要返回的数字,ietr->second是数字的个数 for(auto iter=m.begin();iter!=m.end();iter++) { pair<int,int> pr=make_pair(iter->second,iter->first); q.push(pr); } while(k--) { res.push_back(q.top().second); q.pop(); } return res; }
  • 相关阅读:
    Fish
    Brackets
    StoneWall【★★★★★】
    Nesting
    ajax补充FormData
    初始Ajax
    extra过滤
    Django 之缓存
    django中的信号
    Form组件归类
  • 原文地址:https://www.cnblogs.com/wsw-seu/p/13928749.html
Copyright © 2011-2022 走看看