一、文档扫描步骤
1、原图操作-边缘检测
2、原图操作-获取轮廓
3、原图操作-变换方正
4、OCR识别
二、原图操作
import numpy as np import cv2 def cv_show(name, img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows() def resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized def order_points(pts): # 一共4个坐标点 rect = np.zeros((4, 2), dtype = "float32") # 按顺序找到对应坐标0123分别是 左上,右上,右下,左下 # 计算左上,右下 s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # 计算右上和左下 diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transform(image, pts): # 获取输入坐标点 rect = order_points(pts) (tl, tr, br, bl) = rect # 计算输入的w值, widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # 计算输入的h值 heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # 变换后对应坐标位置 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") # 计算变换矩阵,rect原始近视轮廓和目标轮廓的计算值 M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # 返回变换后结果 return warped image = cv2.imread('receipt.jpg') # 得到比例供透视变换使用 ratio = image.shape[0] /500 orig = image.copy() # 将原图进行resize处理 image = resize(orig, height= 500) # 将图片进行预处理,转为灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 高斯滤波去除噪声 gray = cv2.GaussianBlur(gray, (5, 5), 0) # 进行边缘检测 edged = cv2.Canny(gray, 75, 100) # 轮廓检测 cnts = cv2.findContours(edged.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)[0] # 对检测的轮廓进行按照面积排序,并取出前五个 cnts = sorted(cnts,key=cv2.contourArea,reverse=True)[:5] # 遍历轮廓 for c in cnts: # 计算轮廓近似长度 # C表示输入的点集 # epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数 # True表示封闭的 peri = cv2.arcLength(c, True) # 算出近似轮廓 approx = cv2.approxPolyDP(c, 0.02 * peri, True) # 4个点的时候就拿出来(即是遍历的第一次) if len(approx) == 4: screenCnt = approx # 画出轮廓 cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2) # 透视变换,转为方正的图像;输入原图,近似图, warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio) # 转为灰度图 warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) # 阈值处理 ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1] cv2.imwrite('scan.jpg', ref) cv2.waitKey(0)
三、调用OCR识别
# https://digi.bib.uni-mannheim.de/tesseract/ # 配置环境变量如E:Program Files (x86)Tesseract-OCR # tesseract -v进行测试 # tesseract XXX.png 得到结果 # pip install pytesseract # anaconda lib site-packges pytesseract pytesseract.py # tesseract_cmd 修改为绝对路径即可 from PIL import Image import pytesseract import cv2 import os preprocess = 'blur' #thresh image = cv2.imread('scan.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if preprocess == "thresh": gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] if preprocess == "blur": gray = cv2.medianBlur(gray, 3) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) text = pytesseract.image_to_string(Image.open(filename)) print(text) os.remove(filename)