zoukankan      html  css  js  c++  java
  • opencv实战-文档扫描

    一、文档扫描步骤

    1、原图操作-边缘检测
    2、原图操作-获取轮廓
    3、原图操作-变换方正
    4、OCR识别

    二、原图操作

    import numpy as np
    import cv2
    
    def cv_show(name, img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    
    def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
        dim = None
        (h, w) = image.shape[:2]
        if width is None and height is None:
            return image
        if width is None:
            r = height / float(h)
            dim = (int(w * r), height)
        else:
            r = width / float(w)
            dim = (width, int(h * r))
        resized = cv2.resize(image, dim, interpolation=inter)
        return resized
    
    def order_points(pts):
        # 一共4个坐标点
        rect = np.zeros((4, 2), dtype = "float32")
    
        # 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
        # 计算左上,右下
        s = pts.sum(axis = 1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
    
        # 计算右上和左下
        diff = np.diff(pts, axis = 1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect
    
    def four_point_transform(image, pts):
        # 获取输入坐标点
        rect = order_points(pts)
        (tl, tr, br, bl) = rect
    
        # 计算输入的w值,
        widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
        widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
        maxWidth = max(int(widthA), int(widthB))
    
        # 计算输入的h值
        heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
        heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
        maxHeight = max(int(heightA), int(heightB))
    
        # 变换后对应坐标位置
        dst = np.array([
            [0, 0],
            [maxWidth - 1, 0],
            [maxWidth - 1, maxHeight - 1],
            [0, maxHeight - 1]], dtype = "float32")
    
        # 计算变换矩阵,rect原始近视轮廓和目标轮廓的计算值
        M = cv2.getPerspectiveTransform(rect, dst)
        warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
    
        # 返回变换后结果
        return warped
    
    image = cv2.imread('receipt.jpg')
    # 得到比例供透视变换使用
    ratio = image.shape[0] /500
    orig  = image.copy()
    # 将原图进行resize处理
    image = resize(orig, height= 500)
    # 将图片进行预处理,转为灰度图
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 高斯滤波去除噪声
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    # 进行边缘检测
    edged = cv2.Canny(gray, 75, 100)
    # 轮廓检测
    cnts = cv2.findContours(edged.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)[0]
    # 对检测的轮廓进行按照面积排序,并取出前五个
    cnts = sorted(cnts,key=cv2.contourArea,reverse=True)[:5]
    # 遍历轮廓
    for c in cnts:
        # 计算轮廓近似长度
        # C表示输入的点集
        # epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
        # True表示封闭的
        peri = cv2.arcLength(c, True)
        # 算出近似轮廓
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        # 4个点的时候就拿出来(即是遍历的第一次)
        if len(approx) == 4:
            screenCnt = approx
    # 画出轮廓
    cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
    # 透视变换,转为方正的图像;输入原图,近似图,
    warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
    # 转为灰度图
    warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
    # 阈值处理
    ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]
    cv2.imwrite('scan.jpg', ref)
    cv2.waitKey(0)

    三、调用OCR识别

    # https://digi.bib.uni-mannheim.de/tesseract/
    # 配置环境变量如E:Program Files (x86)Tesseract-OCR
    # tesseract -v进行测试
    # tesseract XXX.png 得到结果 
    # pip install pytesseract
    # anaconda lib site-packges pytesseract pytesseract.py
    # tesseract_cmd 修改为绝对路径即可
    from PIL import Image
    import pytesseract
    import cv2
    import os
    
    preprocess = 'blur' #thresh
    image = cv2.imread('scan.jpg')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    if preprocess == "thresh":
        gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    if preprocess == "blur":
        gray = cv2.medianBlur(gray, 3)  
    filename = "{}.png".format(os.getpid())
    cv2.imwrite(filename, gray)  
    text = pytesseract.image_to_string(Image.open(filename))
    print(text)
    os.remove(filename)
  • 相关阅读:
    chapter4 quantum circuits
    《用广义CNOT门产生质数幂维的图态》
    幺正矩阵的分解
    SpringCloud学习----阳哥(五)
    SpringCloud学习----阳哥(四)
    SpringCloud学习----阳哥(三)
    SpringCloud学习----阳哥(二)
    SpringCloud学习----阳哥(一)
    IDEA插件介绍(一) -RestfulToolkit(接口自测工具)
    常用SQL语句和XML文件格式
  • 原文地址:https://www.cnblogs.com/wu-wu/p/14043192.html
Copyright © 2011-2022 走看看