前言:通常我们会遇到一些问题,采用一些标准的数据结构,如双链表、散列表或二叉查找数时,不能够满足操作要求,需要对这些数据结构进行扩张,添加一些额外的信息使得能够完成新的操作。附加的信息需要对数据结构的某些操作进行调整,这个是非常关键的步骤,决定着数据结构扩张是否能够实现。本章主要讨论了红黑树结构的扩张,介绍了两种扩张方式。第一种方式扩张使得红黑色能够支持动态集合上顺序统计,快速找出集合中第i小的数,或给出某个元素在集合的全序中的排名。第二种方式扩张使得红黑色能够进行区间操作,可以很快地找到集合中覆盖的区间。关于红黑色请参考第13章,http://www.cnblogs.com/Anker/archive/2013/01/30/2882773.html。
1、动态顺序统计
在第九章介绍了顺序统计的概念,大概的意思是在包含有n个元素的集合中,第i个顺序统计量指的是该集合中第i小的元素。在一个无序的集合中,任意顺序统计量都可以在O(n)时间内找到,详细情况可以参考http://www.cnblogs.com/Anker/archive/2013/01/25/2877311.html。书中在此基础上修改红黑树的结构,使得任意的顺序统计量都可以再O(lgn)时间内确定。向红黑树的结构中添加一个size域,表示包含自身节点的当前节点的子树节点的数目。这样修改后可以快速支持顺序统计量操作,将这种修改后的红黑树叫做:顺序统计量树T。修改后的结构如下所示:
struct RBTreeNode { int key; int color; struct RBTreeNode *parent; struct RBTreeNode *left; struct RBTreeNode *right; int size; };
例如给定红黑树的一个节点x,则size[x] = size[left[x]]+size[right[x]]+1。size[x]为包含以x为根的子树的节点数(包含x本身),即子树的大小。如果哨兵定义为0,即设置size[nil[T]]=0。
下面给出一个修改后的红黑树的例子,如下图所示:
红黑树是二叉排序树,按照中序遍历从小到大输出红黑树中的关键字。从图中可以看出,添加size域后,很方便看出每个节点的子树的节点数目(包含自身节点)。书中在后面讨论这种结构的操作,分别讨论如下:
(1)检索具有给定排序的元素
过程OS_SELECT(x,i)返回一个指向以x为根的子树中包含第小关键字的结点的指针,即为了找出顺序统计量树T中的第i小关键字,可以调用OS_SELECT(root[T],i)。书中给出了伪代码如下:
OS_SELECT(x,i) r = size[left[x]]+1; //先计算x的处于的位置 if i = r //x正好是第i小的关键字 then return x; else if i < r //x比第i关键字大,则在其左子树查找 then return OS_SELECT(left[x],i) else return OS_SELECT(right[x],i-r) //x比第i关键字小,则在其右子树查找
该过程类似二分查找,每一次递归调用都在顺序统计数中下降一层,故最坏情况下OS_SELECT的总时间与树的高度成正比,红黑树的高度为lgn。故OS_SELECT的运行时间为:O(lgn)。
(2)确定一个元素的秩(位置)
给定指向一顺序统计树T中节点x的指针,求x在顺序统计树中序遍历得到的线性序中的位置。书中给出了OS_RANK(T,x)过程的伪代码:
OS_RANK(T,x) r = size[left[x]]+1; //获取以x为根子树中x的位置(中序遍历) y = x; while y != root[T] //从下向上直到根节点 do if y = right[p[y]] //如果是右子树 then r = r + size[left[p[y]]]+1; y = p[y]; //向上移动 return r;
从程序总可以看出当y == root[T]时候循环终止,此时以y为根的子树是课完整树,此时r值是这颗整树中key[x]的秩。while循环中的每一次迭代花O(1)时间,且y在每次迭代中沿树上升一层,故在最坏情况下0S_RANK的运行时间与树的高度成正比:对含n个节点的顺序统计树时间为O(lgn)。
(3)对子树规模的维护
在红黑树中添加size域后,能够通过OS_SELECT和OS_RANK迅速计算出所需的顺序统信息。通过修改红黑树的插入和删除操作,在此过程是通过旋转来修改size域。关于这部分需要在红黑树的基础上进行改进,比较复杂,暂时没有实现。
2、如何扩张数据结构
对一种数据结构的扩张过程分为四个步骤:
1)选择基础数据结构
2)确定要在基础数据结构中添加哪些信息
3)验证可用基础数据结构上的基本修改操作来维护这些新添加的信息
4)设计新的操作
书中给出了对红黑树进行扩张的定理,并给出了证明,这个看的时候有些难度,暂时跳过了。大概意思就是说当红黑树被选作基础数据结构时,某些类型的附加信息总是可以用插入和删除来进行有效地维护。
3、区间树
这小结讲的是扩张红黑树以支持由区间构成的动态集合上的操作。区间可以很方便的表示各占用一段连续时间的一些事情。区间树是一种动态集合进行维护的红黑树,该集合中的每个元素x都包含在一个区间int[x]。区间树支持下列操作:
INTERVAL_INSERT(T,x):将包含区间域int的元素x插入到区间树T中
INTERVAL_DELETE(T,X):从区间树T中删除元素x
INTERVAL_SEARCH(T,i):返回一个指向区间树T中元素x的指针,使int[x]与i重叠,若集合中无此元素存在,则返回nil[T]。
修改红黑树得到的区间树如下图所示:
从图可以看出,对区间树以每个节点的左端点值进行中序变量即可得到有序的序列。有了区间树的结果就很容易实现其相关操作。