zoukankan      html  css  js  c++  java
  • Find Peak Element

    A peak element is an element that is greater than its neighbors.

    Given an input array where num[i] ≠ num[i+1], find a peak element and return its index.

    The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.

    You may imagine that num[-1] = num[n] = -∞.

    For example, in array [1, 2, 3, 1], 3 is a peak element and your function should return the index number 2.

     

    Note:

    Your solution should be in logarithmic complexity.

    C++实现代码:

    #include<iostream>
    #include<vector>
    #include<climits>
    using namespace std;
    
    class Solution {
    public:
        int findPeakElement(const vector<int> &num) {
            if(num.empty())
                return -1;
            if(num.size()==1||num[0]>num[1])
                return 0;
            int i=1;
            int n=num.size();
            while(i<n-1)
            {
                if(num[i]>num[i-1]&&num[i]>num[i+1])
                    return i;
                i++;
            }
            if(i==n-1&&num[i]>num[i-1])
                return i;
            return -1;
        }
    };
    
    int main()
    {
        Solution s;
        vector<int> vec={1,2};
        cout<<s.findPeakElement(vec)<<endl;
    }

    方法2:二分查找

    思路:如果中间元素大于其相邻后续元素,则中间元素左侧(包含该中间元素)必包含一个局部最大值。如果中间元素小于其相邻后续元素,则中间元素右侧必包含一个局部最大值。

    class Solution {
    public:
        int findPeakElement(vector<int>& nums) {
            if(nums.empty())
                return -1;
            int left=0;
            int right=nums.size()-1;
            while(left<=right)
            {
                int mid=left+((right-left)>>1);
                if(left==right)
                    return left;
                if(nums[mid]<nums[mid+1])
                    left=mid+1;
                else
                    right=mid;
            }
            return -1;
        }
    };
  • 相关阅读:
    信息安全
    软件体系结构原理、方法与实践总结
    软件项目管理四个核心价值观
    博客园主题修改
    测试
    Java实现人民币大写精讲
    Windows系统性能提升方法
    Oracle系列之游标
    Oracle系列之异常处理
    Oracle系列之权限
  • 原文地址:https://www.cnblogs.com/wuchanming/p/4151563.html
Copyright © 2011-2022 走看看