zoukankan      html  css  js  c++  java
  • redis 缓存击穿

    Redis 缓存穿透 + 缓存雪崩 + 缓存击穿的原因和解决方案

           

    目录

    一、缓存穿透

    解决方案:

    二、缓存雪崩

    解决方案:

    三、缓存击穿

    解决方案:

    在生产环境中,会因为很多的原因造成访问请求绕过了缓存,都需要访问数据库持久层,虽然对Redsi缓存服务器不会造成影响,但是数据库的负载就会增大,使缓存的作用降低

    一、缓存穿透
           缓存穿透是指查询一个根本不存在的数据,缓存层和持久层都不会命中。在日常工作中出于容错的考虑,如果从持久层查不到数据则不写入缓存层,缓存穿透将导致不存在的数据每次请求都要到持久层去查询,失去了缓存保护后端持久的意义

    缓存穿透示意图:

           缓存穿透问题可能会使后端存储负载加大,由于很多后端持久层不具备高并发性,甚至可能造成后端存储宕机。通常可以在程序中统计总调用数、缓存层命中数、如果同一个Key的缓存命中率很低,可能就是出现了缓存穿透问题。

           造成缓存穿透的基本原因有两个。第一,自身业务代码或者数据出现问题(例如:set 和 get 的key不一致),第二,一些恶意攻击、爬虫等造成大量空命中(爬取线上商城商品数据,超大循环递增商品的ID)

    解决方案:
    1. 缓存空对象

           缓存空对象:是指在持久层没有命中的情况下,对key进行set (key,null)

           缓存空对象会有两个问题:第一,value为null 不代表不占用内存空间,空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间,比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。第二,缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为5分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象

    2. 布隆过滤器拦截

            在访问缓存层和存储层之前,将存在的key用布隆过滤器提前保存起来,做第一层拦截,当收到一个对key请求时先用布隆过滤器验证是key否存在,如果存在在进入缓存层、存储层。可以使用bitmap做布隆过滤器。这种方法适用于数据命中不高、数据相对固定、实时性低的应用场景,代码维护较为复杂,但是缓存空间占用少。

            布隆过滤器实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

    算法描述:

    初始状态时,BloomFilter是一个长度为m的位数组,每一位都置为0。

    添加元素x时,x使用k个hash函数得到k个hash值,对m取余,对应的bit位设置为1。

    判断y是否属于这个集合,对y使用k个哈希函数得到k个哈希值,对m取余,所有对应的位置都是1,则认为y属于该集合(哈希冲突,可能存在误判),否则就认为y不属于该集合。可以通过增加哈希函数和增加二进制位数组的长度来降低错报率。

    错报原因:

             一个key映射数组上多位,一位会被多个key使用,也就是多对多的关系。如果一个key映射的所有位值为1,就判断为存在。但是可能会出现key1 和  key2 同时映射到下标为100的位,key1不存在,key2存在,这种情况下会发生错误率

    方案对比:

    二、缓存雪崩
           由于缓存层承载着大量请求,有效地保护了存储层,但是如果缓存层由于某些原因不可用(宕机)或者大量缓存由于超时时间相同在同一时间段失效(大批key失效/热点数据失效),大量请求直接到达存储层,存储层压力过大导致系统雪崩。

    解决方案:
    可以把缓存层设计成高可用的,即使个别节点、个别机器、甚至是机房宕掉,依然可以提供服务。利用sentinel或cluster实现。
    采用多级缓存,本地进程作为一级缓存,redis作为二级缓存,不同级别的缓存设置的超时时间不同,即使某级缓存过期了,也有其他级别缓存兜底
    缓存的过期时间用随机值,尽量让不同的key的过期时间不同(例如:定时任务新建大批量key,设置的过期时间相同)
    三、缓存击穿
    系统中存在以下两个问题时需要引起注意:

    当前key是一个热点key(例如一个秒杀活动),并发量非常大。
    重建缓存不能在短时间完成,可能是一个复杂计算,例如复杂的SQL、多次IO、多个依赖等。
    在缓存失效的瞬间,有大量线程来重建缓存,造成后端负载加大,甚至可能会让应用崩溃。

    解决方案:
    1. 分布式互斥锁

          只允许一个线程重建缓存,其他线程等待重建缓存的线程执行完,重新从缓存获取数据即可。set(key,value,timeout)

    2. 永不过期

    从缓存层面来看,确实没有设置过期时间,所以不会出现热点key过期后产生的问题,也就是“物理”不过期。
    从功能层面来看,为每个value设置一个逻辑过期时间,当发现超过逻辑过期时间后,会使用单独的线程去更新缓


    2种方案对比:

    分布式互斥锁:这种方案思路比较简单,但是存在一定的隐患,如果在查询数据库 + 和 重建缓存(key失效后进行了大量的计算)时间过长,也可能会存在死锁和线程池阻塞的风险,高并发情景下吞吐量会大大降低!但是这种方法能够较好地降低后端存储负载,并在一致性上做得比较好。

    “永远不过期”:这种方案由于没有设置真正的过期时间,实际上已经不存在热点key产生的一系列危害,但是会存在数据不一致的情况,同时代码复杂度会增大。
    ————————————————
    版权声明:本文为CSDN博主「骑驴的小牧童」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/womenyiqilalala/article/details/105205532

  • 相关阅读:
    Insus Meta Utility
    The 'Microsoft.ACE.OLEDB.12.0' provider is not registered on the local machine.
    Insus Binary Utility
    asp.net实现文件下载功能
    Column 'Column Name' does not belong to table Table
    程序已被编译为DLL,怎样去修改程序功能
    如何在Web网站实现搜索功能
    如何把数据流转换为二进制字符串
    Asp.net更新文件夹的文件
    如何显示中文月份
  • 原文地址:https://www.cnblogs.com/wugh8726254/p/14833061.html
Copyright © 2011-2022 走看看